Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 350: 123894, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599270

ABSTRACT

Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Ecosystem , Fresh Water , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Fishes/microbiology , Environmental Monitoring , Water Pollutants, Chemical , Gene Transfer, Horizontal , Aquatic Organisms/genetics , Animals, Wild/microbiology , Drug Resistance, Bacterial/genetics
2.
Sci Total Environ ; 857(Pt 2): 159515, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36270377

ABSTRACT

Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.


Subject(s)
Gastrointestinal Microbiome , Graphite , Microbiota , Animals , Larva , Graphite/toxicity , Xenopus laevis , Bacteria/genetics
3.
Toxics ; 10(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36287868

ABSTRACT

Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge Chironomus riparius. Mortality, growth inhibition, development delay and teratogenicity, assessed using mentum deformity analysis, were investigated after a 7-day static exposure of the first instar larvae under controlled conditions. The collected data indicated that the survival rate was not impacted by GO, whereas chronic toxicity following a dose-dependent response occurred. Larval growth was affected, leading to a significant reduction in larval length (from 4.4 to 10.1%) in individuals reaching the fourth instar at any of the tested concentrations (from 0.1 to 100 mg/L). However, exposure to GO is not associated with an increased occurrence of mouthpart deformities or seriousness in larvae. These results highlight the suitability of monitoring the larval development of C. riparius as a sensitive marker of GO toxicity. The potential ecological consequences of larval size decrease need to be considered for a complete characterization of the GO-related environmental risk.

4.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957161

ABSTRACT

Due to their various properties as polymeric materials, plastics have been produced, used and ultimately discharged into the environment. Although some studies have shown their negative impacts on the marine environment, the effects of plastics on freshwater organisms are still poorly studied, while they could be widely in contact with this pollution. The current work aimed to better elucidate the impact and the toxicity mechanisms of two kinds of commercial functionalized nanoplastics, i.e., carboxylated polystyrene microspheres of, respectively, 350 and 50 nm (PS350 and PS50), and heteroaggregated PS50 with humic acid with an apparent size of 350 nm (PSHA), all used at environmental concentrations (0.1 to 100 µg L-1). For this purpose, two relevant biological and aquatic models-amphibian larvae, Xenopus laevis, and dipters, Chironomus riparius-were used under normalized exposure conditions. The acute, chronic, and genetic toxicity parameters were examined and discussed with regard to the fundamental characterization in media exposures and, especially, the aggregation state of the nanoplastics. The size of PS350 and PSHA remained similar in the Xenopus and Chironomus exposure media. Inversely, PS50 aggregated in both exposition media and finally appeared to be micrometric during the exposition tests. Interestingly, this work highlighted that PS350 has no significant effect on the tested species, while PS50 is the most prone to alter the growth of Xenopus but not of Chironomus. Finally, PSHA induced a significant genotoxicity in Xenopus.

5.
Chemosphere ; 298: 134293, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307387

ABSTRACT

Solar drying and liming are commonly used for sludge treatment, but little is known about their efficiency on antibiotics and Polycyclic Aromatic Hydrocarbons (PAHs) removal. This study aimed to investigate the removal of antibiotics and PAHs during solar drying of Limed Sludge (LS) and Non-Limed Sludge (NLS). Thus, organic matter fractionation and 3D fluorescence were used to assess the accessibility and the complexity of organic matter. 2 experiments have been conducted using LS and NLS for 45 days of drying in a pilot scale tunnel. Physicochemical results indicated significant decrease of water content (90%) for both sludge samples within 15 days of drying. For both treatments, the removal of total organic carbon and total nitrogen was low and similar for both treatments. Through this study, it has been confirmed that liming and drying contributed to a strong modification of the organic matter quality with an increase of its accessibility. On the other hand, drying alone increased the less accessible compartments, while the presence of lime affected the interconnexion between the organic matter pools. 3D fluorescence confirmed the obtained results and indicated that LS leads to obtaining more simple molecules in the most accessible compartments, while NLS leads to obtaining more complex molecules in the less accessible compartments. In addition, solar radiations and leaching may contribute to the significant removal (p < 0.01) of roxithromycin, benzo(a)anthracene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and benzo(g, h, i) perylene in the presence of lime. Furthermore, the evolution of organic matter pools in terms of accessibility and complexity may drive the bioavailability of these pollutants, leading to their significant removal.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Sewage , Anti-Bacterial Agents , Benzo(a)pyrene , Chemical Fractionation , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage/chemistry
6.
Chemosphere ; 281: 130901, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34023764

ABSTRACT

The interest for graphene-based nanomaterials (GBMs) is growing worldwide as their properties allow the development of new innovative applications. In parallel, concerns are increasing about their potential adverse effects on the environment are increasing. The available data concerning the potential risk associated to exposure of aquatic organisms to these GBMs are still limited and little is known regarding their endocrine disruption potential. In the present study, the endocrine disruption potential of graphene oxide (GO) and reduced graphene oxide (rGO) was assessed using a T3-induced amphibian metamorphosis assay. The results indicated that GBMs potentiate the effects of exogenous T3 with a more marked effect of GO compared to rGO. T3 quantifications in the exposure media indicated adsorption of the hormone on GBMs, increasing its bioavailability for organisms because GBMs are accumulated in the gut and the gills of these amphibians. This study highlights that the tested GBMs do not disrupt the thyroid pathway in amphibians but indicates that adsorption properties of these nanomaterials may increase the bioavailability and the toxicity of other pollutants.


Subject(s)
Graphite , Animals , Graphite/toxicity , Metamorphosis, Biological , Triiodothyronine , Xenopus laevis
7.
Front Microbiol ; 12: 623853, 2021.
Article in English | MEDLINE | ID: mdl-33841352

ABSTRACT

Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L-1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L-1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.

8.
Nanomaterials (Basel) ; 11(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668678

ABSTRACT

The environmental fate and behavior of nanoplastics (NPs) and their toxicity against aquatic organisms are under current investigation. In this work, relevant physicochemical characterizations were provided to analyze the ecotoxicological risk of NPs in the aquatic compartment. For this purpose, heteroaggregates of 50 nm polystyrene nanospheres and natural organic matter were prepared and characterized. The kinetic of aggregation was assimilated to a reaction-limited colloid aggregation mode and led to the formation of heteroaggregates in the range of 100-500 nm. Toxicities of these heteroaggregates and polystyrene nanospheres (50 and 350 nm) were assessed for a large range of concentrations using four benthic and one planktonic algal species, in regards to particle states in the media. Heteroaggregates and nanospheres were shown to be stable in the exposure media during the ecotoxity tests. The algal species exhibited very low sensitivity (growth and photosynthetic activity), with the noteworthy exception of the planktonic alga, whose growth increased by more than 150% with the heteroaggregates at 1 µg L-1. Despite the lack of a strong direct effect of the NPs, they may still impair the functioning of aquatic ecosystems by destabilizing the competitive interactions between species. Moreover, further work should assess the toxicity of NPs associated with other substances (adsorbed pollutants or additives) that could enhance the NP effects.

9.
Nanotoxicology ; 15(1): 35-51, 2021 02.
Article in English | MEDLINE | ID: mdl-33171057

ABSTRACT

Despite the growing interest for boron nitride nanotubes (BNNT) due to their unique properties, data on the evaluation of the environmental risk potential of this emerging engineered nanomaterial are currently lacking. Therefore, the ecotoxicity of a commercial form of BNNT (containing tubes, hexagonal-boron nitride, and boron) was assessed in vivo toward larvae of the amphibian Xenopus laevis. Following the exposure, multiple endpoints were measured in the tadpoles as well as in bacterial communities associated to the host gut. Exposure to BNNT led to boron accumulation in host tissues and was not associated to genotoxic effects. However, the growth of the tadpoles increased due to BNNT exposure. This parameter was associated to remodeling of gut microbiome, benefiting to taxa from the phylum Bacteroidetes. Changes in relative abundance of this phylum were positively correlated to larval growth. The obtained results support the finding that BNNT are biocompatible as indicated by the absence of toxic effect from the tested nanomaterials. In addition, byproducts, especially free boron present in the tested product, were overall beneficial for the metabolism of the tadpoles.


Subject(s)
Boron Compounds/toxicity , Gastrointestinal Microbiome/drug effects , Nanotubes/toxicity , Xenopus laevis/microbiology , Animals , Environmental Monitoring , Larva/drug effects , Larva/microbiology
10.
Ecotoxicol Environ Saf ; 185: 109693, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31550565

ABSTRACT

The objective of this study was to investigate chemical, biological and eco-toxicological parameters of a compost produced through the co-composting of dewatered primary sludge (DPS) and date palm waste to evaluate in which extent it can exploited as a bio-fertilizer. DPS and date palm waste were co-composted in aerobic conditions for 210 days. Physico-chemical parameters were evaluated during composting (total organic carbon, total nitrogen, pH, available forms of phosphorus). Furthermore, heavy metals (Cd, Cu, Cr, Pb, Ni, Zn) and antibiotics (fluoroquinolones, macrolides and tetracyclines) content were analyzed in the DPS. To evaluate the genotoxicity of substrates, Vicia faba micronucleus test was carried out. Single and combined toxicities of a mixture of antibiotics (ciprofloxacin, enroflxacin, nalidixic acid, roxithromycin and sulfapyridin) and chromium (Cr2 (SO4)3 and K2Cr2O7) were examined. Although the final compost product showed a significant decrease of the genotoxicity, almost 50% of the micronucleus frequency still remained, which could be explained by the persistence of several recalcitrant compounds such as chromium and some antibiotics. Overall, the presence of antibiotics and chromium showed that some specific combination of contaminants represent an ecological risk for soil health and ecosystems even at environmentally negligible concentrations.


Subject(s)
Anti-Bacterial Agents/toxicity , Chromium/toxicity , Composting , Mutagens/toxicity , Sewage/chemistry , Soil Pollutants/toxicity , Vicia faba/drug effects , Ecosystem , Fertilizers/analysis , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Soil/chemistry , Vicia faba/genetics
12.
Environ Pollut ; 248: 989-999, 2019 May.
Article in English | MEDLINE | ID: mdl-31091643

ABSTRACT

Gut microbial communities constitute a compartment of crucial importance in regulation of homeostasis of multiple host physiological functions as well as in resistance towards environmental pollutants. Many chemical contaminants were shown to constitute a major threat for gut bacteria. Changes in gut microbiome could lead to alteration of host health. The access to high-throughput sequencing platforms permitted a great expansion of this discipline in human health while data from ecotoxicological studies are scarce and particularly those related to aquatic pollution. The main purpose of this review is to summarize recent body of literature providing data obtained from microbial community surveys using high-throughput 16S rRNA sequencing technology applied to aquatic ecotoxicity. Effects of pesticides, PCBs, PBDEs, heavy metals, nanoparticles, PPCPs, microplastics and endocrine disruptors on gut microbial communities are presented and discussed. We pointed out difficulties and limits provided by actual methodologies. We also proposed ways to improve understanding of links between changes in gut bacterial communities and host fitness loss, along with further applications for this emerging discipline.


Subject(s)
Bacteria/drug effects , Endocrine Disruptors/toxicity , Gastrointestinal Microbiome/drug effects , Halogenated Diphenyl Ethers/toxicity , Metals, Heavy/toxicity , Pesticides/toxicity , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Amphibians/microbiology , Animals , Aquatic Organisms/microbiology , Bacteria/classification , Bacteria/genetics , Ecotoxicology , Fishes/microbiology , Humans , Microbiota/drug effects , RNA, Ribosomal, 16S/genetics
13.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970633

ABSTRACT

The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg.L-¹). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate "safer-by-design" strategy for the development of a safer material for environment.

14.
Waste Manag ; 84: 13-19, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30691885

ABSTRACT

Antibiotics persistence in the primary sludge can contribute to the emergence of these molecules in the environment and limit the agricultural recycling of sludge without any preliminary treatment. Composting is a widely used process for recycling sludges and then can contribute to the antibiotics removal. However, little interest is actually given to the evaluation of the persistence of some antibiotics families after the sludge co-composting and more particularly to the final compost valorization. In this work, antibiotics concentrations of ßeta-lactams, Macrolides, Lincosamide, Tetracyclines, Sulfonamides and Fluoroquinolones were checked in the primary sludge of the wastewater treatment plants (WWTP) of Marrakesh (Morocco) before its co-composting. The results showed a final high amount of the fluoroquinolones family (4.21 and 2.92 µg/kg DM for Ciprofloxacin and Ofloxacin respectively) compared to the other studied families. To assess the fate of antibiotics, the primary sludge and palm waste were windrowed and composted during 120 days. The final compost showed a high level of organic matter decomposition (52%) and a C/N ratio of 12 which insure the compost quality. The assessment of antibiotics concentrations during co-composting showed that clarithromycin is more degraded particularly during the stabilization stage (43%), the degradation of lincomycin and tetracyclines is more significant during the maturation stage (36 and 75% respectively). Ampicillin and trimethoprim were degraded all along the process of co-composting (46 and 35% respectively). By the way, the persistence of the fluoroquinolones family was observed. This persistence could be a limiting key factor for the composted sludge valorization. So, more knowledge is needed to understand fluoroquinolones behavior and, then, to optimize their composting conditions.


Subject(s)
Composting , Anti-Bacterial Agents , Morocco , Sewage , Soil , Wastewater
15.
Chemosphere ; 211: 893-902, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30119021

ABSTRACT

In this work a fast analytical method for the determination of macrolides, tetracyclines and fluoroquinolones in a compost originating from a mixture of sewage sludge, palm waste and grass was developed by ultra-high performance liquid chromatography coupled to mass spectrometry (U-HPLC/MS). Antibiotics were extracted from compost by using the accelerated solvent extraction (ASE). The chromatographic separation was carried out on a T3 Cortecs C18 column using a mobile phase gradient mixture of water acidified with 1% of formic acid and acetonitrile. Recoveries of 24-30%, 53-93%, 33-57%, 69-135% and 100-171% were obtained for roxithromycin (ROX), chlortetracycline (CTC), oxytetracycline (OTC), enrofloxacin (ENR) and ciprofloxacin (CIP), respectively. As the most part of antibiotics showed significant matrix effect (ME), the method was validated using the standard addition method (SAM) to correct the observed ME. Instrumental variation, of LC/MS system, showed that 93.75% of the relative standard deviation (RSD %) are below 15%, although the organic load of extracts. This analytical method was applied to assess the fate of antibiotics during composting. Two composting experiments were conducted separately after spiking sludge at 2 different concentrations levels. The resulting elimination rates were of 52-76, 69-100, 100 and 24-50% for ROX, CTC, OTC and CIP, respectively. These results suggest that composting process contributes to the removal of residuals concentrations of macrolides and tetracyclines while the fluoroquinolones persist in the final compost product.


Subject(s)
Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/analysis
16.
J Hazard Mater ; 359: 465-481, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30071464

ABSTRACT

Wastewater treatment plant effluent, sludge and manure are the main sources of contamination by antibiotics in the whole environment compartments (soil, sediment, surface and underground water). One of the major consequences of the antibiotics discharge into the environment could be the prevalence of a bacterial resistance to antibiotic. In this review, four groups of antibiotics (Tetracyclines, Fluoroquinolones, Macrolides and Sulfonamides) were focused for the background on their wide spread occurrence in sludge and manure and for their effects on several target and non-target species. The antibiotics concentrations range between 1 and 136,000 µg kg-1 of dry matter in sludge and manure, representing a potential risk for the human health and the environment. Composting of sludge or manure is a well-known and used organic matter stabilization technology, which could be effective in reducing the antibiotics levels as well as the antibiotic resistance genes. During sludge or manure composting, the antibiotics removals range between 17-100%. The deduced calculated half-lives range between 1-105 days for most of the studied antibiotics. Nevertheless, these removals are often based on the measurement of concentration without considering the matter removal (lack of matter balance) and very few studies are emphasized on the removal mechanisms (biotic/abiotic, bound residues formation) and the potential presence of more or less hazardous transformation products. The results from the few studies on the fate of the antibiotic resistance genes during sludge or manure composting are still inconsistent showing either decrease or increase of their concentration in the final product. Whether for antibiotic or antibiotic resistance genes, additional researches are needed, gathering chemical, microbiological and toxicological data to better understand the implied removal mechanisms (chemical, physical and biological), the interactions between both components and the environmental matrices (organic, inorganic bearing phases) and how composting process could be optimized to reduce the discharge of antibiotics and antibiotic resistance genes into the environment.


Subject(s)
Anti-Bacterial Agents/analysis , Manure/analysis , Sewage/analysis , Veterinary Drugs/analysis , Animals , Biodegradation, Environmental , Composting , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans
17.
Data Brief ; 17: 890-896, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29876442

ABSTRACT

In this study, the data sets and analyses provided the information on the characterization of titanium dioxide nanoparticles (TiO2 NPs), and their impacts on rhizosphere pH, and soil-bound phosphorus (P) availability to plants together with relevant parameters. For this purpose, wheat (Triticum aestivum L.) was cultivated in the TiO2 NPs amended soil over a period of 60 days. After harvesting, the soil and plants were analyzed to examine the rhizosphere pH, P availability in rhizosphere soil, uptake in roots and shoots, biomass produced, chlorophyll content and translocation to different plant parts monitored by SEM and EDX techniques in response to different dosages of TiO2 NPs. The strong relationship can be found among TiO2 NPs application, P availability, and plant growth.

18.
Plant Physiol Biochem ; 127: 630-635, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29747147

ABSTRACT

With the rapid advancement in technologies over recent decades, abundant data regarding plant physiological/biochemical responses to stress conditions are now available. Comparing plant stress responses using latest statistical software and analytical models can trace very interesting and useful trends in literature data, which can be of high use for future research and policy making. This model study uses principal component analysis (PCA) to compare physiological/biochemical responses of Vicia faba plant against Pb stress chelated by ethylenediaminetetraacetic acid (EDTA) or citric acid (CA). PCA confirmed the descriptive analysis and divided all the treatments into two main groups: toxic (Pb alone, Pb-CA-a and Pb-CA-b), and non-toxic (control, EDTA-b, CA-b, Pb-EDTA-a and Pb-EDTA-b) treatments. PCA analysis further revealed the effectiveness of different plant physiological/biochemical responses under Pb stress: glutathione reductase (GR) and ascorbate peroxidase (APX) are the main enzymes reacting against Pb toxicity in relation with Pb uptake by V. faba roots, while GR reacts alone in leaves. It is proposed, using latest statistical tests and software, that the comparison and correlation of physiological responses and analytical techniques can be applied at various levels and types of stresses and responses of living organisms to develop a larger dataset based on existing literature. The trends marked out can be correlated with biochemical and physiological processes/mechanisms taking place at genetic-cellular level.


Subject(s)
Biochemistry , Lead/pharmacology , Plant Physiological Phenomena , Plant Proteins , Plants , Stress, Physiological/drug effects , Vicia faba , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/classification , Plants/genetics , Plants/metabolism , Vicia faba/genetics , Vicia faba/metabolism
19.
Environ Sci Pollut Res Int ; 24(20): 17081-17089, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28585007

ABSTRACT

We studied the fate and toxicity of two types of CeO2 NPs (bare or citrate-coated) in environmentally relevant conditions, using large indoor microcosms. Long-term exposure was carried out on a three-leveled freshwater trophic chain, comprising microbial communities as primary producers, chironomid larvae as primary consumers, and amphibian larvae as secondary consumers. Whereas coated NPs preferentially sedimented, bare NPs were mainly found in the water column. However, mass balance indicated low recovery (51.5%) for bare NPs, indicating possible NP loss, against 98.8% of recovery for coated NPs. NPs were rather chemically stable, with less than 4% of dissolution. Chironomid larvae ingested large amounts of NPs and were vectors of contamination for amphibian larvae. Although bioaccumulation in amphibian larvae was important (9.47 and 9.74 mg/kg for bare and coated NPs, respectively), no biomagnification occurred through the trophic chain. Finally, significant genotoxicity was observed in amphibian larvae, bare CeO2 NPs being more toxic than citrate-coated NPs. ᅟ.


Subject(s)
Cerium/toxicity , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Amphibians , Animals , Chironomidae , Fresh Water , Larva , Metal Nanoparticles
20.
Waste Manag ; 68: 388-397, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28655462

ABSTRACT

The objective of this study was to investigate thermal and physicochemical parameters of sewage sludge-palm waste mixtures contaminated by different families of antibiotics (tetracyclines, macrolides and fluoroquinolones) during co-composting. Sludge was spiked with chlortetracycline (CTC), oxytetracycline (OTC), roxithromycin (RXY), enrofloxacin (ENR) and ciprofloxacin (CIP). Antibiotics were spiked at a low level, medium level, high level and a control without antibiotics was conducted. The results showed that the organic matter degradation was delayed and the carbon/nitrogen (C/N) ratio was affected by an increase of the antibiotics concentration. The presence of antibiotics, especially at high level, delayed the coming of the temperature maxima, and disturbed the thermophilic phase. The calorific model showed that the heat release is affected during the thermophilic phase when high antibiotics concentrations were used. In addition, the microbiological approach showed that the adsorption of antibiotics on the rachis could be probably responsible of the fungi inhibition especially during the maturation phase. Therefore, the medium and high levels of antibiotics affected the thermal, physical and chemical parameters as well as the compost quality.


Subject(s)
Anti-Bacterial Agents , Bioreactors , Sewage , Nitrogen , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...