Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Genet Mol Res ; 16(1)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28362994

ABSTRACT

Pak choi is a highly nutritious vegetable that is widely grown in China, Southeast Asia, and other parts of the world. Because it reproduces by seed, it is very important to understand the mechanism of floral organ development. Therefore, using the Chinese cabbage genome as a reference, this study analyzed the expression profiles of shoot apex genes at flower bud differentiation stages 1 and 5, in order to identify genes related to floral organ development. The results showed that the proportion of mapped genes was high, with 84.25 and 83.80% of clean reads from the two sample saligned to the reference genome, respectively. A total of 525 differentially expressed genes (DEGs) were identified, 224 of which were upregulated and 301 were downregulated. The expression levels of genes homologous to Chinese cabbage flowering genes were also analyzed at stages 1 and 5; the expression levels of Bra012997 (ap1), Bra000393 (SOC1), and Bra004928 (SOC1) were significantly upregulated at stage 5, suggesting that these three genes positively regulate floral development in pak choi. DEGs involved in floral organ development were analyzed with homologous genes from Arabidopsis thaliana; the homologous genes Bra029281 (AGL42), Bra026577 (ARPN), Bra022954 (SPL3), Bra029293 (ARF2), Bra007978 (AtRLP12), Bra033221 (SPL8), Bra008037 (LOX4), Bra001598 (IAA19), Bra003892 (PATL1), Bra038778 (AT4G21323), Bra025315 (KLCR2), and Bra013906 (DTX35) are directly related to floral organ development in Arabidopsis, suggesting that these genes have corresponding functions during flower organ development in pak choi, and could be candidates for further genetic research. These results provide a foundation for research on the molecular mechanism of flower organ development in pak choi and other Brassica rapa vegetables.


Subject(s)
Brassica/genetics , China , Chromosome Mapping , Flowers/genetics , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Seeds/genetics , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...