Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848847

ABSTRACT

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Subject(s)
Bacteria , Flax , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flax/microbiology , Lignin/metabolism , Lignin/chemistry , Hydrolysis , Spectroscopy, Fourier Transform Infrared , Phylogeny , RNA, Ribosomal, 16S/genetics , Pectins/metabolism , Cellulose/metabolism
2.
J Hazard Mater ; 465: 133456, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38211525

ABSTRACT

Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.


Subject(s)
Composting , Microbiota , Amoxicillin , RNA, Ribosomal
3.
Front Microbiol ; 14: 1228700, 2023.
Article in English | MEDLINE | ID: mdl-37965545

ABSTRACT

Increasing evidence suggests that the pathogenesis of type 2 diabetes mellitus (T2DM) is closely related to the gut microbiota. Polyphenols have been shown to alleviate T2DM, but the effects of L. caerulea L. polyphenols (LPs) on the gut microbiota and metabolites remain elusive. In this study, the inhibitory effects of fermented L. caerulea L. polyphenols (FLPs) and unfermented L. caerulea L. polyphenols (ULPs) on α-amylase and α-glucosidase and the impact of LP on the gut microbiota and metabolites were investigated. Furthermore, the relationship between the two was revealed through correlation analysis. The results showed that ULP and FLP had the highest inhibitory rates against α-amylase and α-glucosidase at 4 mg ml-1, indicating a strong inhibitory ability. In addition, LP plays a regulatory role in the concentration of short-chain fatty acids (SCFAs) and tends to restore them to their normal levels. LP reversed the dysbiosis of the gut microbiota caused by T2DM, as evidenced by an increase in the abundance of bacterial genera such as Lactobacillus, Blautia, and Bacteroides and a decrease in the abundance of bacterial genera such as Escherichia-Shigella and Streptococcus. Similarly, after LP intervention, the relationships among microbial species became more complex and interconnected. In addition, the correlation between the gut microbiota and metabolites was established through correlation analysis. These further findings clarify the mechanism of action of LP against T2DM and provide a new target for T2DM interventions.

4.
Environ Res ; 238(Pt 2): 117219, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37778608

ABSTRACT

To explore the response of soil metabolite composition to soybean disease, the effect of the combined inoculation of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria on soybean root rot caused by Fusarium oxysporum was studied. A factorial completely randomized design with three factors (AMF, Bacillus. paramycoides, and rot disease stress) was conducted, and eight treatments, including normal groups and stress groups, were performed using pot experiments. GC‒MS and enzymatic assays were used to evaluate the soil factors and soybean growth indicators. The results showed that there were significant differences in the composition of metabolites among the different treatment groups, and 23 metabolites were significantly related to soybean biomass. The combined inoculation of Funneliformis mosseae and Bacillus paramycoides resulted in a significant reduction in harmful soil metabolites associated with root rot disease, such as ethylbenzene and styrene. This reduction in metabolites contributed to improving soil health, as evidenced by enhanced soybean defence enzyme activities and microbial activity, and ß-1,3-glucanase, chitinase and phenylalanine ammonia-lyase activities were improved to alleviate plant rhizosphere stress. Furthermore, soybean plants inoculated with the synergistic treatments exhibited reduced root rot disease severity and improved growth indicators compared to control plants. Plant height, root dry weight (RDW), and shoot and root fresh weight (SRFW) were improved by 4.18-53.79%, and the AM fungal colonization rate was also improved under stress. The synergistic application of Funneliformis mosseae and Bacillus paramycoides can effectively enhance soil health by inhibiting the production of harmful soil metabolites and improving soybean tolerance to root rot disease. This approach holds promise for the sustainable management of soil-borne diseases in soybean cultivation.


Subject(s)
Bacillus , Mycorrhizae , Soil , Glycine max/microbiology , Mycorrhizae/physiology , Plant Roots/metabolism , Plant Roots/microbiology
5.
Front Microbiol ; 14: 1210302, 2023.
Article in English | MEDLINE | ID: mdl-37440877

ABSTRACT

In this study, an exopolysaccharide (EPS)-producing strain of Lactiplantibacillus plantarum HDC-01 was isolated from sauerkraut, and the structure, properties and biological activity of the studied EPS were assessed. The molecular weight of the isolated EPS is 2.505 × 106 Da. Fourier transform infrared spectrometry (FT-IR) and nuclear magnetic resonance (NMR) results showed that the EPS was composed of glucose/glucopyranose subunits linked by an α-(1 → 6) glycosidic bond and contained an α-(1 → 3) branching structure. X-ray diffraction (XRD) analysis revealed the amorphous nature of the EPS. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the isolated EPS had a smooth and compact surface with several protrusions of varying lengths and irregularly shaped material. Moreover, the studied EPS showed good thermal stability, water holding capacity, and milk coagulation ability and promoted the growth of probiotics. L. plantarum EPS may be used as prebiotics in the fields of food and medicine.

6.
Int J Biol Macromol ; 240: 124414, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37059280

ABSTRACT

To explore the effect of Lonicera caerulea fruit polyphenols (LCP) on caries-causing bacteria, strain RYX-01 with high production of biofilm and exopolysaccharides (EPS) was isolated from the oral cavity of caries patients and was identified as Lactobacillus rhamnosus by 16S rDNA analysis and morphology. The characteristics of EPS produced by RYX-01 (EPS-CK) and those produced by adding L. caerulea fruit polyphenols (EPS-LCP) were compared to reveal whether LCP reduced the cariogenicity of RYX-01 by influencing the structure and composition of EPS. The results showed that LCP could increase the content of galactose in EPS and destroy the original aggregation state of EPS-CK but had no significant effect on the molecular weight and functional group composition of EPS (p > 0.05). At the same time, LCP could inhibit the growth of RYX-01, reduce EPS and biofilm formation and inhibit the expression of quorum sensing (QS, luxS)- and biofilm formation (wzb)-related genes. Therefore, LCP could change the surface morphology, content and composition of RYX-01 EPS and reduce the cariogenic effect of EPS and biofilm. In conclusion, LCP can be used as a potential plaque biofilm inhibitor and QS inhibitor in drugs and functional foods.


Subject(s)
Lacticaseibacillus rhamnosus , Quorum Sensing , Humans , Lacticaseibacillus rhamnosus/genetics , Polyphenols/pharmacology , Biofilms
7.
Bioresour Technol ; 376: 128883, 2023 May.
Article in English | MEDLINE | ID: mdl-36921638

ABSTRACT

Aerobic composting renders the sauerkraut fermentation waste water harmless while adding soluble nutrients. Unravelling the bacterial community assembly processes, changes in community robustness and community cohesion and the relationship between them under composting treatment of sauerkraut fermentation waste water is an interesting topic. Sauerkraut fermentation waste water was used for composting, which increased bacterial linkages, community robustness, competitive behaviour during warming periods and cooperative behaviour during cooling periods, and the control of community assembly processes shifts from deterministic processes (variable selection) to stochastic processes (decentralised limitation). At the same time, the influence of community robustness and community cohesion on community assembly processes was increased. Community cohesion and robustness were significantly correlated with community function. These results indicate that community robustness and community cohesion are critical for the biological handling of hazardous substances.


Subject(s)
Composting , Fermentation , Wastewater , Bacteria , Nutrients , Soil
8.
Prep Biochem Biotechnol ; 53(5): 500-510, 2023.
Article in English | MEDLINE | ID: mdl-35981049

ABSTRACT

Microalgal biodiesel as a substitute for fossil energy has attracted extensive attention. However, the high cost of microalgae cultivation limits the industrial production of microalgal biodiesel. The co-culture system may offer a means to increase microalgae's biomass production. In this study, Streptomyces strains were selected to construct and optimize co-culture systems with Monoraphidium sp. HDMA-11 and the algal cell biomass, lipid content, phycocyanin content, starch content, and fatty acid composition were determined. The results showed that Streptomyces nojiriensis significantly promoted Monoraphidium sp. HDMA-11 growth and a co-culture system were established. Orthogonal experiments showed that the Monoraphidium sp. HDMA-11 biomass was further increased when the initial culture pH was 7.5, the inoculation time of Streptomyces strain supernatants was 36 h, the volume ratio of microalgal actinomycetes was 1:1, and no additional acetic acid was added. Under these conditions, compared with monocultured Monoraphidium sp. HDMA-11, the cell biomass and lipid productivity of the co-culture system increased by 525.8 and 155.1%, respectively. These results suggest that S. nojiriensis supernatant potentially enhances microalgae biomass and may represent a new method to improve microalgae growth.


Subject(s)
Actinobacteria , Chlorophyceae , Microalgae , Lipids , Actinomyces , Biofuels , Coculture Techniques , Biomass
9.
Int J Biol Macromol ; 217: 303-311, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35839950

ABSTRACT

The bacterial strain HDE-9 was isolated from sauerkraut and identified as Levilactobacillus brevis. An exopolysaccharide (EPS) was isolated and purified from L. brevis HDE-9, and a preliminary investigation of its structural characteristics and biological activity was conducted. The molecular weight of the EPS was >1.0 × 106 Da. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy revealed that the EPS was composed of α-(1 â†’ 6) linked d-glucopyranose units. X-ray diffraction (XRD) data on the EPS revealed its non-crystalline amorphous structure. Scanning electron microscopy (SEM) of the EPS revealed a smooth surface with sheet structures. The EPS exhibited the high value in thermal stability, water solubility, water holding capacity (WHC), and emulsification activity (EA). The water contact angle of the EPS revealed relatively high hydrophobicity in the presence of sucrose. The EPS also showed a strong milk solidification capacity in a dose-dependent manner. The EPS could significantly improve the texture of yoghurt, indicating its potential application as a functional starter in the production of fermented dairy products.


Subject(s)
Cultured Milk Products , Levilactobacillus brevis , Molecular Weight , Polysaccharides, Bacterial/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
10.
Front Microbiol ; 13: 888645, 2022.
Article in English | MEDLINE | ID: mdl-35756060

ABSTRACT

Rice blast caused by Magnaporthe oryzae is one of the most destructive plant diseases. The secondary metabolites of Streptomyces have potential as biological control agents against M. oryzae. However, no commercial secondary antimicrobial products of Streptomyces have been found by gene prediction, and, particularly relevant for this study, a biocontrol agent obtained from Streptomyces bikiniensis has yet to be found. In this research, genomic analysis was used to predict the secondary metabolites of Streptomyces, and the ability to develop biocontrol pharmaceuticals rapidly was demonstrated. The complete genome of the S. bikiniensis HD-087 strain was sequenced and revealed a number of key functional gene clusters that contribute to the biosynthesis of active secondary metabolites. The crude extract of lipopeptides (CEL) predicted by NRPS gene clusters was extracted from the fermentation liquid of S. bikiniensis HD-087 by acid precipitation followed by methanol extraction, and surfactins, iturins, and fengycins were identified by liquid chromatography-mass spectrometry (LC-MS). In vitro, the CEL of this strain inhibited spore germination and appressorial formation of M. oryzae by destroying membrane integrity and through the leakage of cellular components. In vivo, this CEL reduced the disease index of rice blast by approximately 76.9% on detached leaves, whereas its control effect on leaf blast during pot experiments was approximately 60%. Thus, the S. bikiniensis CEL appears to be a highly suitable alternative to synthetic chemical fungicides for controlling M. oryzae.

11.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 518-530, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35234379

ABSTRACT

Intense utilization and mining of fossil fuels for energy production have resulted in environmental pollution and climate change. Compared to fossil fuels, microalgae is considered as a promising candidate for biodiesel production due to its fast growth rate, high lipid content and no occupying arable land. However, monocultural microalgae bear high cost of harvesting, and are prone to contamination, making them incompetent compared with traditional renewable energy sources. Co-culture system induces self-flocculation, which may reduce the cost of microalgae harvesting and the possibility of contamination. In addition, the productivity of lipid and high-value by-products are higher in co-culture system. Therefore, co-culture system represents an economic, energy saving, and efficient technology. This review aims to highlight the advances in the co-culture system, including the mechanisms of interactions between microalgae and other microorganisms, the factors affecting the lipid production of co-culture, and the potential applications of co-culture system. Finally, the prospects and challenges to algal co-culture systems were also discussed.


Subject(s)
Microalgae , Biofuels , Biomass , Coculture Techniques , Flocculation
12.
Int J Biol Macromol ; 206: 777-787, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35307459

ABSTRACT

In this study, the exopolysaccharide (EPS) from Saccharomyces cerevisiae Y3 was extracted and purified, the preliminary structure characteristics and biological activities was investigated. The S. cerevisiae Y3 EPS was obtained by ethanol precipitation and gel filtration chromatography. MW of purified Y3 EPS was 93,477 Da. High-performance liquid chromatography (HPLC), fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and methylation analyses showed that the EPS was a heteropolysaccharide, which composed of 1-α-D mannose (39.8%), 1,2-α-D mannose (19.6%), 1,6-α-D linked mannose (10.4%), 1,3,6-ß-D glucose (27.5%), and 1-ß-D linked glucose (1.9%). Scanning electron microscope (SEM) and atomic force microscope (AFM) further revealed smooth and dense sheet-like structure with reticular configuration. The Congo red test and X-ray diffraction (XRD) reflected an irregular coil conformation and non-crystalline amorphous nature. The EPS exhibited good hydrophilicity, thermal stability and antioxidation ability for DPPH radicals, hydroxyl radicals and NO2-, as well as good prebiotic properties. These results indicated that Y3 EPS could be explored as a promising functional adjunct for application in probiotics and antioxidation.


Subject(s)
Polysaccharides, Bacterial , Saccharomyces cerevisiae , Antioxidants/chemistry , Mannose , Molecular Weight , Polysaccharides, Bacterial/chemistry , Spectroscopy, Fourier Transform Infrared
13.
Int J Biol Macromol ; 204: 677-684, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35181327

ABSTRACT

An EPS produced by Weissella confusa H2 was purified through Sephadex G-100, and the preliminary structure characteristics and biological activities of H2 EPS were analyzed. Molecular mass of purified H2 EPS was 2.705 × 106 Da as measured with gel permeation chromatography (GPC). Composition of monosaccharides, nuclear magnetic resonance (NMR) spectroscopy spectroscopy and fourier transform infrared (FT-IR) showed that the EPS was a linear homopolysaccharide, mainly constituted of glucose and it is suggested that the EPS was dextran with α-(1 â†’ 6) glycosidic bonds and a few α-(1 â†’ 3) branches. Atomic force micrograph (AFM) and scanning electron microscopy (SEM) analysis of dextran further revealed sheets branched microstructure anchored with many irregular protuberances in aqueous solution. The XRD pattern reflected non-crystalline amorphous nature. In addition, the solubility, water-holding capacity, thermal property, rheological property and heavy metal chelating activity of the purified H2 dextran were determined. The dissolution percentage and water holding capacity of the dextran were 98.78 ± 1.37% and 426.03 ± 7.26%, respectively. The dextran exhibited good hydrophilicity, thermal stability and heavy metal chelating activity. Rheological studies exhibited rotational speed, pH, temperature, metal ions solutions dependent semiviscous nature. These results support its use as an additive in the food and environmental protection fields.


Subject(s)
Dextrans , Weissella , Dextrans/chemistry , Molecular Weight , Polysaccharides, Bacterial/chemistry , Spectroscopy, Fourier Transform Infrared , Weissella/chemistry
14.
Prep Biochem Biotechnol ; 52(10): 1151-1159, 2022.
Article in English | MEDLINE | ID: mdl-35175890

ABSTRACT

A ß-mannanase-producing lactic acid bacteria (LAB) was identified as Weissella cibaria F1 according to physiological and biochemical properties, morphological observations, partial sequence of 16S rRNA gene and API 50 CHL test. In order to improve the yield of ß-mannanase, the response surface methodology (RSM) was originally used to optimize the fermentation conditions. The optimization results showed that when the konjac powder, glucose, and initial pH were 9.46 g/L, 14.47 g/L and 5.67, respectively, the ß-mannanase activity increased to 38.81 ± 0.33 U/mL, which was 1.33 times compared to initial yield (29.28 ± 0.26 U/mL). This result was also supported by larger clearance on the konjac powder-MRS agar plate through Congo Red dyeing. The W. cibaria F1 ß-mannanase could improve the clarity of five fruits juice, i.e., apple, orange, peach, persimmon and blue honeysuckle. Among these, peach juice was the most obvious, clarity increasing by 12.8%. These results collectively indicated that W. cibaria F1 ß-mannanase had an applicable potential in food-level fields.


Subject(s)
Weissella , beta-Mannosidase , beta-Mannosidase/genetics , RNA, Ribosomal, 16S/genetics , Powders , Weissella/genetics
15.
Prep Biochem Biotechnol ; 52(5): 566-577, 2022.
Article in English | MEDLINE | ID: mdl-34550854

ABSTRACT

Response surface methodology (RSM) was used to optimize the conditions of exopolysaccharides (EPSs) by Saccharomyces cerevisiae Y3. The results indicated that the yield of EPS reached 4.52 ± 0.14 g/L with 10.30% (w/v) sucrose, 0.64% (w/v) yeast extract, liquid volume 141.5 mL, which was 2.40 times the original EPS yield. Y3 EPS contained 83.65 ± 0.16% of total sugars, 15.27 ± 0.26% of uronic acid, 0.78 ± 0.02% of protein and 0.30 ± 0.12% of sulfuric acid groups. Y3 EPS maintained a relatively low viscosity, with intrinsic viscosities of 306.58 mL/g (25 °C) and 200.91 mL/g (35 °C), respectively. The EPS had high water solubility index (WSI), high water holding capacity (WHC) and good emulsifying ability (EA). Meanwhile, the EPS could absorb metal ions such as Cu2+, Fe2+ and Zn2+. In addition, Y3 EPS exhibited good antioxidant properties and coagulated skim milk with a concentration-dependent manner. These results indicated that S. cerevisiae Y3 EPS had applicable prospects in medicine, food, especially the dairy industry.


Subject(s)
Polysaccharides, Bacterial , Saccharomyces cerevisiae , Antioxidants , Viscosity , Water
16.
Prep Biochem Biotechnol ; 52(1): 62-69, 2022.
Article in English | MEDLINE | ID: mdl-33881948

ABSTRACT

Saccharomyces cerevisiae has good reproductive ability in both haploid and diploid forms, a pyruvate decarboxylase plays an important role in S. cerevisiae cell metabolism. In this study, pdc1 and pdc5 double knockout strains of S. cerevisiae H14-02 (MATa type) and S. cerevisiae H5-02 (MATα type) were obtained by the Cre/loxP technique. The effects of the deletion of pdc1 and pdc5 on the metabolites of the two haploid S. cerevisiae strains were consistent. In S. cerevisiae H14-02, the ethanol conversion decreased by 30.19%, the conversion of glycerol increased by 40.005%, the concentration of acetic acid decreased by 43.54%, the concentration of acetoin increased by 12.79 times, and the activity of pyruvate decarboxylase decreased by 40.91% compared to those in the original H14 strain. The original S. cerevisiae haploid strain H14 produced a small amount of acetoin but produced very little 2,3-butanediol. However, S. cerevisiae H14-02 produced 1.420 ± 0.063 g/L 2,3-BD. This study not only provides strain selection for obtaining haploid strains with a high yield of 2,3-BD but also lays a foundation for haploid S. cerevisiae to be used as a new tool for genetic research and breeding programs.


Subject(s)
Carboxy-Lyases/genetics , Pyruvate Decarboxylase/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Acetoin/metabolism , Butylene Glycols/metabolism , Carboxy-Lyases/metabolism , Ethanol/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Gene Knockout Techniques , Glycerol/metabolism , Haploidy , Pyruvate Decarboxylase/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
17.
Prep Biochem Biotechnol ; 52(7): 762-769, 2022.
Article in English | MEDLINE | ID: mdl-34704893

ABSTRACT

A lactic acid bacteria (LAB) isolated from pickled Chinese cucumber was screened for bacteriocin production. The strain was identified to be Enterococcus faecium HDX-2. Based on the Plackett-Burman (PB) experiment, glucose, Ca2+, and initial pH were found to be the most significant parameters of bacteriocin production. Afterward, effects of the three main parameters on bacteriocin activity were further investigated by central composite design (CCD) and the optimum composition was glucose 22 g/L, Ca2+ 0.6 mM, and initial pH 7.2. Optimum results showed that bacteriocin activity was increased to 1337.60 ± 36.71 AU/mL, 2.23-fold higher than in MRS medium without parameters optimization. The bacteriocin also showed significant antimicrobial activity against Listeria monocytogenes in meat and cheese model system.


Subject(s)
Bacteriocins , Cheese , Enterococcus faecium , Listeria monocytogenes , Cheese/microbiology , Enterococcus faecium/chemistry , Glucose
18.
Prep Biochem Biotechnol ; 52(7): 845-853, 2022.
Article in English | MEDLINE | ID: mdl-34826265

ABSTRACT

Bacillus licheniformis HDYM-04 was isolated in flax retting water and showed ß-mannanase activity. Carbon sources for ß-mannanase production, as well as the fermentation conditions and feeding strategy, were optimized in shake flasks. When glucose or konjac powder was used as the carbon source, the ß-mannanase activity was 288.13 ± 21.59 U/mL and 696.35 ± 23.47 U/mL at 24 h, respectively, which was approximately 4.4- to 10.68-fold higher than the values obtained with wheat powder. When 0.5% (w/v) glucose and 1% (w/v) konjac powder were added together, maximum enzyme activities of 789.07 ± 25.82 U/mL were obtained, an increase of 13.35% compared to the unoptimized cultures with only 1% (w/v) konjac powder. The enzyme activity decreased in the presence of 1% (w/v) konjac powder, but the highest enzyme activity was 1,533.26 ± 33.74 U/mL, a 1.2-fold increase compared with that in nonoptimized cultures; when 0.5% (w/v) glucose was used, the highest enzyme activity was 966.53 ± 27.84 U/mL, an increase in ß-mannanase activity of 38.79% compared with control cultures. In this study, by optimizing fed-batch fermentation conditions, the yield of ß-mannanase produced by HDYM-04 was increased, laying the foundation for the industrial application and further research of B. licheniformis HDYM-04.


Subject(s)
Bacillus licheniformis , beta-Mannosidase , Bacillus licheniformis/metabolism , Carbon , Fermentation , Glucose , Powders , beta-Mannosidase/metabolism
19.
Bioresour Technol ; 347: 126372, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34801721

ABSTRACT

In this study, the effects of penicillin G (PENG) on the fate of bacterial communities and ß-lactamase antibiotic resistance genes (ARGs) during chicken manure composting were assessed, to illustrate the roles of PENG in ARGs behavior. The results showed that the total absolute abundances of 9 ARGs and 4 mobile genetic elements (MGEs) was significantly increased by PENG (P < 0.05). Dozens of potential hosts for ARGs were predominantly affiliated with Firmicutes, Proteobacteria, and Actinobacteria. Meanwhile, the higher concentration of PENG significantly increased the abundance of luxI and luxS in quorum sensing (QS) (P < 0.05), which enhanced the frequency of inter/intraspecific gene "communication." Redundancy analysis and structural equation modeling further revealed that QS had a strong regulatory role in horizontal gene transfer of ARGs mediated via MGEs. These results provide new insight into the mechanism of ARGs propagation in aerobic composting modified by PENG.


Subject(s)
Composting , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Microbial , Genes, Bacterial , Manure , Penicillin G , Quorum Sensing
20.
Prep Biochem Biotechnol ; 52(7): 783-788, 2022.
Article in English | MEDLINE | ID: mdl-34694193

ABSTRACT

A broad-spectrum antimicrobial peptide named Paracin 1.7 was produced by Lactobacillus paracasei HD1.7, which was isolated from Chinese sauerkraut juice. In this study, the influence of cocultivation on the communication mechanism of L. paracasei HD1.7 and Bacillus subtilis was investigated. The two bacterial strains were grown in monoculture and indirect coculture, and the growth of both bacteria and bacteriocin production as well as the transcriptional level of luxS in L. paracasei HD1.7 and spo0A in B. subtilis were monitored. Bacteriocin production and cell numbers were increased significantly when L. paracasei HD1.7 cells were indirectly cocultured with B. subtilis, and bacteriocin-producing L. paracasei HD1.7 can prevent the growth and sporulation of B. subtilis. After indirect coculture with B. subtilis, the expression of luxS in L. paracasei HD1.7 increased in the exponential growth phase and decreased in the stationary phase compared to monoculture. The expression of spo0A in B. subtilis dropped in the indirect coculture compared to the monoculture. It indicate that the upregulation of luxS is due to a response to a secreted compound produced by B. subtilis. The results show L. paracasei HD1.7 has an amensalism on B. subtilis, while B. subtilis has a commensalism on L. paracasei HD1.7.


Subject(s)
Bacteriocins , Brassica , Lacticaseibacillus paracasei , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Brassica/metabolism , Coculture Techniques , Lacticaseibacillus paracasei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...