Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Chin J Dent Res ; 27(2): 133-141, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38953478

ABSTRACT

OBJECTIVE: To find efficient cuproptosis-related biomarkers to explore the oncogenesis and progression of oral squamous cell carcinoma (OSCC). METHODS: All the original data were downloaded from the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and Kaplan-Meier survival analysis were used to identify the gene related to survival. Tumor Immune Estimation Resource 2.0 (TIMER 2.0) was used to reveal the different expression of cuproptosis-related gene lipoyltransferase 1 (LIPT1) in various kinds of tumours. RESULTS: LIPT1, as a cuproptosis-related gene, was found to be differentially expressed in the OSCC group and the control group. It was also found to be related to the prognosis of OSCC. Pan cancer analysis showed LIPT1 was also involved in various kinds of tumours. CONCLUSION: All the results demonstrate that the cuproptosis-related gene LIPT1 is highly involved in the oncogenesis and progression of OSCC. These findings give new insight for further research into the cuproptosis-related biomarkers in OSCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Prognosis , Acyltransferases/genetics , Kaplan-Meier Estimate
2.
Mar Genomics ; 76: 101126, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009497

ABSTRACT

Isolated from intertidal sediment of the Yellow Sea, China, Bremerella sp. P1 putatively represents a novel species within the genus Bremerella of the family Pirellulaceae in the phylum Planctomycetota. The complete genome of strain P1 comprises a single circular chromosome with a size of 6,955,728 bp and a GC content of 55.26%. The genome contains 5772 protein-coding genes, 80 tRNA and 6 rRNA genes. A total of 147 CAZymes and 128 sulfatases have been identified from the genome of strain P1, indicating that the strain has the capability to degrade a wide range of polysaccharides. Moreover, a gene cluster related to bacterial microcompartments (BMCs) formation containing genes encoding the shell proteins and related enzymes to metabolize fucose or rhamnose is also found in the genome of strain P1. The genome of strain P1 represents the second complete one in the genus Bremerella, expanding the understanding of the physiological and metabolic characteristics, interspecies diversity, and ecological functions of the genus.


Subject(s)
Genome, Bacterial , Polysaccharides , Polysaccharides/metabolism , Whole Genome Sequencing , China
3.
NPJ Parkinsons Dis ; 10(1): 129, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961119

ABSTRACT

The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.

5.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927119

ABSTRACT

Lung cancer is a major global health concern with a low survival rate, often due to late-stage diagnosis. Liquid biopsy offers a non-invasive approach to cancer detection and monitoring, utilizing various features of circulating cell-free DNA (cfDNA). In this study, we established two models based on cfDNA coverage patterns at the transcription start sites (TSSs) from 6X whole-genome sequencing: an Early Cancer Screening Model and an EGFR mutation status prediction model. The Early Cancer Screening Model showed encouraging prediction ability, especially for early-stage lung cancer. The EGFR mutation status prediction model exhibited high accuracy in distinguishing between EGFR-positive and wild-type cases. Additionally, cfDNA coverage patterns at TSSs also reflect gene expression patterns at the pathway level in lung cancer patients. These findings demonstrate the potential applications of cfDNA coverage patterns at TSSs in early cancer screening and in cancer subtyping.


Subject(s)
Cell-Free Nucleic Acids , Early Detection of Cancer , ErbB Receptors , Lung Neoplasms , Mutation , Humans , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Early Detection of Cancer/methods , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Male , Middle Aged , Aged , Proof of Concept Study , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Liquid Biopsy/methods , Whole Genome Sequencing , Transcription Initiation Site , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood
6.
Sci Rep ; 14(1): 10015, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693176

ABSTRACT

Police officers often face emotionally challenging interpersonal situations and numerous studies have demonstrated that policing is a stressful occupation. A study revealed a significant positive correlation between emotional demands among police officers and emotional dissonance, as well as burnout. Health-promoting behaviors can contribute to better overall health outcomes and reduce the risk of developing health problems, but there is limited research evaluating the association of job strain and health behaviors with mental health outcomes in police officers. The objective of this study was to assess the job strain associated with mental health mediated by health behaviors in Taiwanese police officers. This was a cross-sectional quantitative study conducted in Oct 2016. A total of 41,871 police officers (response rate was 79.7%) participated questionnaire that consisted of demographic information, job characteristics, health behaviors, and mental component summary (MCS) scores of the Short-Form Health Survey. Independent t-tests and one-way analysis of variance (One-way ANOVA) were conducted to assess the differences in mean MCS scores across various demographics, health behavior, and job characteristics. Multivariate regression analyses were used to assess the relationship between job strain and health behaviors with mental health outcomes. MCS scores were associated with job characteristics and health behaviors among police officers except for gender. After adjusting for covariates, multivariate analysis indicated that police officers with high job demands and high job strain index exhibited poor MCS scores. Job strain was significantly associated with MCS mediated by health behaviors (consumption of fruits and vegetables, and physical activity) in Taiwanese police officers. Since regular physical activity and increased vegetable and fruit consumption might alleviate the effects of job strain on mental health status, it is recommended that institutional policies be established to promote health-enhancing behaviors among police officers.


Subject(s)
Health Behavior , Mental Health , Occupational Stress , Police , Humans , Police/psychology , Male , Female , Adult , Taiwan/epidemiology , Occupational Stress/epidemiology , Occupational Stress/psychology , Cross-Sectional Studies , Middle Aged , Surveys and Questionnaires
7.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664737

ABSTRACT

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Subject(s)
Bacteria , Metagenomics , Nutrients , Peptidoglycan , Phytoplankton , Polysaccharides , Seawater , Polysaccharides/metabolism , Seawater/microbiology , Phytoplankton/metabolism , Phytoplankton/genetics , Nutrients/metabolism , Peptidoglycan/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota
8.
Cancer Cell ; 42(5): 815-832.e12, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38640932

ABSTRACT

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.


Subject(s)
Adrenomedullin , Brain Neoplasms , Glioblastoma , Tumor-Associated Macrophages , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/blood supply , Glioblastoma/genetics , Glioblastoma/metabolism , Animals , Adrenomedullin/genetics , Adrenomedullin/metabolism , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Neovascularization, Pathologic/genetics , Tumor Microenvironment , Isocitrate Dehydrogenase/genetics , Xenograft Model Antitumor Assays , Cell Line, Tumor , Macrophages/metabolism , Cell Hypoxia
9.
BMC Public Health ; 24(1): 1186, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678225

ABSTRACT

BACKGROUND/OBJECTIVE: Limited evidence exists regarding the socioeconomic inequalities in cerebrovascular disease (CBD) mortality at different urbanization levels. Therefore, this study was conducted to assess the socioeconomic inequalities and urbanization levels in township-based CBD mortality in Taiwan. METHODS: Socioeconomic variables, including the percentages of low-income households, individuals with a university education and above, and tax payments, were measured at the township level from 2011 to 2020. Urbanization was also determined by the national survey and divided into seven levels. Age-standardized mortality rate (ASMR) of CBD was calculated using a Geographic Information System (GIS) in 358 townships. The effects of socioeconomic variables and urbanization levels on relative and absolute inequalities in township-based CBD mortality rates were examined. RESULTS: Significant differences in ASMR of CBD were observed across all socioeconomic status indicators over the years. Higher proportions of low-income households were associated with higher ASMR of CBD. Conversely, there were negative correlations between higher proportions of individuals with a university education and above and tax payments with ASMR of CBD. The regression analysis indicated significant impacts of relative and absolute socioeconomic inequalities on ASMR of CBD. Additionally, a moderation effect of socioeconomic variables and urbanization on CBD mortality rates was observed, with rural areas showing sensitivity to these factors. CONCLUSION: Although ASMR of CBD showed significant decreases over time, socioeconomic inequalities in CBD mortality rates persist. Interventions targeting socioeconomic inequalities in health outcomes, especially in rural areas, are needed to address this issue.


Subject(s)
Cerebrovascular Disorders , Health Status Disparities , Social Class , Urbanization , Humans , Taiwan/epidemiology , Cerebrovascular Disorders/mortality , Female , Male , Middle Aged , Aged , Adult , Socioeconomic Factors
10.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259074

ABSTRACT

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Subject(s)
Edible Seaweeds , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humans , Metagenome , Kelp/metabolism , Polysaccharides/metabolism , Alginates/metabolism , Flavobacteriaceae/genetics , Flavobacteriaceae/metabolism , Carbon/metabolism
11.
Aliment Pharmacol Ther ; 59(6): 742-751, 2024 03.
Article in English | MEDLINE | ID: mdl-38173278

ABSTRACT

BACKGROUND: Racial and ethnic disparities exist for hepatitis C virus (HCV) treatment and hepatocellular carcinoma (HCC) survival. AIM: To evaluate the impact of HCV treatment on such disparities. METHODS: In a retrospective cohort study, we analysed 6069 patients with HCV-related HCC (54.2% Asian, 30.1% White, 8.5% Black, and 7.3% Hispanic) from centres in the United States and Asia. RESULTS: The mean age was 61, 60, 59 and 68, respectively, for White, Black, Hispanic and Asian patients. Black patients were most likely to have Barcelona Clinic Liver Cancer stage D, vascular invasion and distant metastasis (23% vs. 5%-15%, 20% vs. 10%-17% and 10% vs. 5%-7%, respectively; all p < 0.0001). Treatment rate with direct-acting antiviral agents (DAA) was 35.9% for Asian, 34.9% for White, 30.3% for Hispanic (30.3%), and 18.7% for Black patients (p < 0.0001). Among those untreated or without sustained virologic response (SVR), 10-year survival rates were 35.4, 27.5, 19.3 and 14.0, respectively, for Asian, Hispanic, White and Black patients (p < 0.0001). There were no statistically significant differences among those with SVR (p = 0.44). On multivariable analysis adjusted for relevant confounders, there was no statistically significant association between survival and being Hispanic (aHR: 0.68, p = 0.26) or Black (aHR: 1.18, p = 0.60) versus White. There was a significant association between being Asian American and survival (aHR: 0.24, p = 0.001; non-U.S. Asian: aHR: 0.66, p = 0.05), and for SVR (aHR: 0.30, p < 0.0001). CONCLUSION: DAA treatment rates were suboptimal. Racial and ethnic disparities resolved with HCV cure. Early diagnosis and improved access to HCV treatment is needed for all patients with HCV infection.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Humans , United States/epidemiology , Antiviral Agents/therapeutic use , Hepacivirus , Sustained Virologic Response , Retrospective Studies , Hepatitis C, Chronic/drug therapy , Early Detection of Cancer , Hepatitis C/drug therapy
12.
Bioorg Med Chem Lett ; 99: 129623, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38242331

ABSTRACT

Dengue virus (DENV) is a significant global health threat, causing millions of cases worldwide each year. Developing antiviral drugs for DENV has been a challenging endeavor. Our previous study identified anti-DENV properties of two (-)-cytisine derivatives contained substitutions within the 2-pyridone core from a pool of 19 (-)-cytisine derivatives. This study aimed to expand on the previous research by investigating the antiviral potential of N-methylcytisine thio (mCy thio) derivatives against DENV, understanding the molecular mechanisms of antiviral activity for the active thio derivatives. The inhibitory assays on DENV-2-induced cytopathic effect and infectivity revealed that mCy thio derivatives 3 ((1R,5S)-3-methyl-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocine-8-thione) and 6 ((1S,5R)-3-methyl-2-thioxo-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one) were identified as the active compounds against both DENV-1 and DENV-2. Derivative 6 displayed robust antiviral activity against DENV-2, with EC50 values ranging from 0.002 to 0.005 µM in different cell lines. Derivative 3 also exhibited significant antiviral activity against DENV-2. The study found that these compounds are effective at inhibiting DENV-2 at both the entry stage (including virus attachment) and post-entry stages of the viral life cycle. The study also investigated the inhibition of the DENV-2 NS2B-NS3 protease activity by these compounds. Derivative 6 demonstrated notably stronger inhibition compared to mCy thio 3, revealing its dual antiviral action at both the entry and post-entry stages. Molecular docking simulations indicated that mCy thio derivatives 3 and 6 bind to the domain I and III of the DENV E protein, as well as the active of NS2B-NS3 protease, suggesting their molecular interactions with the virus. The study demonstrates the antiviral efficacy of N-methylcytisine thio derivatives against DENV. It provides valuable insights into the potential interactions between these compounds and viral target proteins, which could be useful in the development of antiviral drugs for DENV.


Subject(s)
Dengue Virus , Quinolizidine Alkaloids , Molecular Docking Simulation , Viral Envelope Proteins , Peptide Hydrolases , Serine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins
13.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948998

ABSTRACT

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Respiratory Insufficiency , Humans , COVID-19/complications , COVID-19/pathology , Pulmonary Fibrosis/pathology , Autopsy , SARS-CoV-2 , Lung/pathology , Macrophages/pathology , Respiratory Insufficiency/pathology , Apoptosis
14.
Environ Int ; 182: 108325, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995388

ABSTRACT

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Subject(s)
Alginates , Microbiota , Alginates/metabolism , Bacteria/genetics , Seawater/microbiology
15.
Sci Rep ; 13(1): 18622, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903843

ABSTRACT

The distinction between Parkinson's disease (PD) and essential tremor (ET) tremors is subtle, posing challenges in differentiation. To accurately classify the PD and ET, BiLSTM-based recurrent neural networks are employed to classify between normal patients (N), PD patients, and ET patients using accelerometry data on their lower arm (L), hand (H), and upper arm (U) as inputs. The trained recurrent neural network (RNN) has reached 80% accuracy. The neural network is analyzed using layer-wise relevance propagation (LRP) to understand the internal workings of the neural network. A novel explainable AI method, called LRP-based approximate linear weights (ALW), is introduced to identify the similarities in relevance when assigning the class scores in the neural network. The ALW functions as a 2D kernel that linearly transforms the input data directly into the class scores, which significantly reduces the complexity of analyzing the neural network. This new classification method reconstructs the neural network's original function, achieving a 73% PD and ET tremor classification accuracy. By analyzing the ALWs, the correlation between each input and the class can also be determined. Then, the differentiating features can be subsequently identified. Since the input is preprocessed using short-time Fourier transform (STFT), the differences between the magnitude of tremor frequencies ranging from 3 to 30 Hz in the mean N, PD, and ET subjects are successfully identified. Aside from matching the current medical knowledge on frequency content in the tremors, the differentiating features also provide insights about frequency contents in the tremors in other frequency bands and body parts.


Subject(s)
Essential Tremor , Parkinson Disease , Humans , Tremor , Artificial Intelligence , Neural Networks, Computer , Birth Weight
16.
ACS Omega ; 8(40): 37421-37430, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841163

ABSTRACT

Herein, by introducing a VO2+ group into the microstructure of phosphomolybdenic acid (PMA) and loading it onto MOF-808, a series of composite catalysts were obtained by reducing the V element with Vitamin C (ascorbic acid). V atoms exist in the secondary structural units of phosphomolybdic acid as [VO(H2O)5]H[PMo12O40]. Surprisingly, the VC-VO-PMA/MOF-808 completely removed DBT and 4,6-DMDBT from the simulated oil in 12 min. The EPR and XPS results verify the electronic structure and valence state of V4+ in the composites. The oxygen vacancy and V4+ generated by VC modification in VC-VO-PMA/MOF-808 have positive effects on the oxidation desulfurization (ODS) activity. Based on the design of the microstructure and electronic structure, this study provides a new paradigm for the development of readily available and efficient ODS catalysts.

17.
Biomedicines ; 11(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37893127

ABSTRACT

Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline was investigated for its antiviral potential against DENV. This study provides evidence of the antiviral activity of varenicline against DENV, regardless of the virus serotype or cell type used. Varenicline demonstrated dose-dependent effects in reducing viral protein expression, infectivity, and virus yield in Vero and A549 cells infected with DENV-1 and DENV-2, with EC50 values ranging from 0.44 to 1.66 µM. Time-of-addition and removal experiments demonstrated that varenicline had a stronger inhibitory effect on the post-entry stage of DENV-2 replication than on the entry stage, as well as the preinfection and virus attachment stages. Furthermore, cell-based trans-cleavage assays indicated that varenicline dose-dependently inhibited the proteolytic activity of DENV-2 NS2B-NS3 protease. Docking models revealed the formation of hydrogen bonds and van der Waals forces between varenicline and specific residues in the DENV-1 and DENV-2 NS2B-NS3 proteases. These results highlight the antiviral activity and potential mechanism of varenicline against DENV, offering valuable insights for further research and development in the treatment of DENV infection.

18.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37689971

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Subject(s)
Antibodies, Monoclonal , Broadly Neutralizing Antibodies , COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , COVID-19/therapy , Dependovirus/genetics , RNA, Viral , SARS-CoV-2/genetics , Broadly Neutralizing Antibodies/pharmacology , Broadly Neutralizing Antibodies/therapeutic use
19.
Cancers (Basel) ; 15(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686504

ABSTRACT

Due to the growing number of medical images being produced by diverse radiological imaging techniques, radiography examinations with computer-aided diagnoses could greatly assist clinical applications. However, an imaging facility with just a one-pixel inaccuracy will lead to the inaccurate prediction of medical images. Misclassification may lead to the wrong clinical decision. This scenario is similar to the adversarial attacks on deep learning models. Therefore, one-pixel and multi-pixel level attacks on a Deep Neural Network (DNN) model trained on various medical image datasets are investigated in this study. Common multiclass and multi-label datasets are examined for one-pixel type attacks. Moreover, different experiments are conducted in order to determine how changing the number of pixels in the image may affect the classification performance and robustness of diverse DNN models. The experimental results show that it was difficult for the medical images to survive the pixel attacks, raising the issue of the accuracy of medical image classification and the importance of the model's ability to resist these attacks for a computer-aided diagnosis.

20.
Biomed Pharmacother ; 165: 115100, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418977

ABSTRACT

The use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum. However, the effects of MA in PD mice were not dose-responsive, since similar beneficial effects for low and high doses of MA were observed. Further mechanism studies indicated that low dose MA administration favored probiotic bacterial growth in PD mice, which helped to increase striatal serotonin, 5-hydroxyindole acetic acid, and γ-aminobutyric acid levels. High dose MA treatment did not influence GM composition in PD mice but significantly inhibited neuroinflammation as indicated by reduced levels of tumor necrosis factor alpha and interleukin 1ß in the SNpc; moreover, these effects were mainly mediated by microbially-derived acetic acid in the colon. In conclusion, oral MA at different doses protected against PD via distinct mechanisms related to GM. Nevertheless, our study lacked in-depth investigations of the underlying mechanisms involved; future studies will be designed to further delineate the signaling pathways involved in the interactive actions between different doses of MA and GM.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Parkinson Disease/metabolism , Substantia Nigra , Dopamine/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dopaminergic Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...