Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomater Res ; 21: 19, 2017.
Article in English | MEDLINE | ID: mdl-29075508

ABSTRACT

BACKGROUND: The three-dimensional (3D) system is one of the important factors to engineer a biocompatible and functional scaffold for the applications of cell-based therapies for cartilage repair. The 3D alginate hydrogels system has previously been shown to potentially promote chondrogenesis. The chondrocytic differentiation of co-cultured adipose-derived stem cells (ADSCs) and nasal chondrocytes (NCs) within alginate constructs are hypothesized to be influenced by concentration of alginate hydrogel. In this study, we evaluated the effects of alginate concentration on chondrogenic differentiation of ADSCs and NCs co-cultured in a biological approach. METHOD: The co-cultured cells of 2:1 ADSCs-to-NCs ratio were encapsulated in alginate constructs in one of three concentrations (1.0%, 1.2% and 1.5%) and cultured under serum free conditions for 7 days. Cell viability, cell proliferation, immunohistochemical, gycosaminogylycans (GAG) synthesis, and gene expression were examined. RESULTS: Overall, the 1.2% alginate concentration group was relatively effective in chondrocytic differentiation in comparable to other groups. The cell morphology, cell viability, and cell proliferation revealed initial chondrogenic differentiation by the formation of cell clusters as well as the high permeability for exchange of solutes. The formation of newly synthesis cartilage-specific extracellular matrix in 1.2% group was demonstrated by positive immunohistochemical staining of collagen type II. The co-cultured cells in 1.2% group highly expressed COL II, ACP and SOX-9, compared to 1.0% and 1.5% groups, denote the retention of cartilaginous-specific phenotype by suppressing the undifferentiation stem cell markers of SOX-2 and OCT-4. The study showed 1.2% group was less likely to differentiate towards osteogenesis by downregulating hyperthrophy chondrocytic gene of COL X and osseous marker genes of OSC and OSP. CONCLUSION: This study suggests that variations in the alginate concentration of co-cultured ADSCs and NCs influenced the chondrogenesis. The remarkable biological performance on chondrogenic differentiation in regulating the concentration of alginate 3D culture provides new insights into the cell cross-talk and demonstrates the effectiveness in regenerative therapies of cartilage defects in tissue engineering.

2.
Inflamm Res ; 66(1): 49-58, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27658702

ABSTRACT

OBJECTIVE AND DESIGN: Oxygen tension and biomechanical signals are factors that regulate inflammatory mechanisms in chondrocytes. We examined whether low oxygen tension influenced the cells response to TNFα and dynamic compression. MATERIALS AND METHODS: Chondrocyte/agarose constructs were treated with varying concentrations of TNFα (0.1-100 ng/ml) and cultured at 5 and 21 % oxygen tension for 48 h. In separate experiments, constructs were subjected to dynamic compression (15 %) and treated with TNFα (10 ng/ml) and/or L-NIO (1 mM) at 5 and 21 % oxygen tension using an ex vivo bioreactor for 48 h. Markers for catabolic activity (NO, PGE2) and tissue remodelling (GAG, MMPs) were quantified by biochemical assay. ADAMTS-5 and MMP-13 expression were examined by real-time qPCR. 2-way ANOVA and a post hoc Bonferroni-corrected t test were used to analyse data. RESULTS: TNFα dose-dependently increased NO, PGE2 and MMP activity (all p < 0.001) and induced MMP-13 (p < 0.05) and ADAMTS-5 gene expression (pp < 0.01) with values greater at 5 % oxygen tension than 21 %. The induction of catabolic mediators by TNFα was reduced by dynamic compression and/or L-NIO (all p < 0.001), with a greater inhibition observed at 5% than 21 %. The stimulation of GAG synthesis by dynamic compression was greater at 21 % than 5 % oxygen tension and this response was reduced with TNFα or reversed with L-NIO. CONCLUSIONS: The present findings revealed that TNFα increased production of NO, PGE2 and MMP activity at 5 % oxygen tension. The effects induced by TNFα were reduced by dynamic compression and/or the NOS inhibitor, linking both types of stimuli to reparative activities. Future therapeutics should develop oxygen-sensitive antagonists which are directed to interfering with the TNFα-induced pathways.


Subject(s)
Chondrocytes/drug effects , Oxygen/physiology , Tumor Necrosis Factor-alpha/pharmacology , ADAMTS5 Protein/genetics , Animals , Cattle , Cells, Cultured , Chondrocytes/metabolism , Chondrocytes/physiology , Dinoprostone/metabolism , Glycosaminoglycans/metabolism , Matrix Metalloproteinase 13/genetics , Nitric Oxide/metabolism , Stress, Mechanical
3.
Osteoarthritis Cartilage ; 22(11): 1800-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25086404

ABSTRACT

C-type natriuretic peptide (CNP) has been demonstrated in human and mouse models to play critical roles in cartilage homeostasis and endochondral bone formation. Indeed, targeted inactivation of the genes encoding CNP results in severe dwarfism and skeletal defects with a reduction in growth plate chondrocytes. Conversely, cartilage-specific overexpression of CNP was observed to rescue the phenotype of CNP deficient mice and significantly enhanced bone growth caused by growth plate expansion. In vitro studies reported that exogenous CNP influenced chondrocyte differentiation, proliferation and matrix synthesis with the response dependent on CNP concentration. The chondroprotective effects were shown to be mediated by natriuretic peptide receptor (Npr)2 and enhanced synthesis of cyclic guanosine-3',5'-monophosphate (cGMP) production. Recent studies also showed certain homeostatic effects of CNP are mediated by the clearance inactivation receptor, Npr3, highlighting several mechanisms in maintaining tissue homeostasis. However, the CNP signalling systems are complex and influenced by multiple factors that will lead to altered signalling and tissue dysfunction. This review will discuss the differential role of CNP signalling in regulating cartilage and bone homeostasis and how the pathways are influenced by age, inflammation or sex. Evidence indicates that enhanced CNP signalling may prevent growth retardation and protect cartilage in patients with inflammatory joint disease.


Subject(s)
Cartilage/growth & development , Growth Plate/metabolism , Natriuretic Peptide, C-Type/physiology , Osteogenesis/physiology , Animals , Bone Development , Cartilage/metabolism , Homeostasis , Humans
4.
Cell Prolif ; 46(3): 300-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23672290

ABSTRACT

OBJECTIVES: This study investigated effects of reduced serum condition and vascular endothelial growth factor (VEGF) on angiogenic potential of adipose stromal cells (ASCs) in vitro. MATERIALS AND METHODS: Adipose stromal cells were cultured in three different types of medium: (i) F12/DMEM (FD) supplemented with 10% FBS from passage 0 (P0) to P6; (ii) FD supplemented with 2% FBS at P6; and (iii) FD supplemented with 2% FBS plus 50 ng/ml of VEGF at P6. Morphological changes and growth rate of ASCs were recorded. Changes in stemness, angiogenic and endogenic genes' expressions were analysed using Real-Time PCR. RESULTS: Adipose stromal cells changed from fibroblast-like shape when cultured in 10% FBS medium to polygonal when cultured in 2% FBS plus VEGF-supplemented medium. Their growth rate was lower in 2% FBS medium, but increased with addition of VEGF. Real-Time PCR showed that ASCs maintained most of their stemness and angiogenic genes' expression in 10% FBS at P1, P5 and P6, but this increased significantly in 2% FBS at P6. Endogenic genes expression such as PECAM-1, VE chaderin and VEGFR-2 decreased after serial passage in 10% FBS, but increased significantly at P6 in 2% FBS. Addition of VEGF did not cause any significant change in gene expression level. CONCLUSION: Adipose stromal cells had greater angiogenic potential when cultured in reduced serum conditions. VEGF did not enhance their angiogenic potential in 2% FBS-supplemented medium.


Subject(s)
Adipocytes/drug effects , Mesenchymal Stem Cells/drug effects , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Adipocytes/cytology , Adipose Tissue/cytology , Adipose Tissue/drug effects , Cell Culture Techniques , Cells, Cultured , Culture Media , Fibroblasts/drug effects , Humans , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/genetics
5.
Biomech Model Mechanobiol ; 11(7): 983-93, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22234779

ABSTRACT

Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.


Subject(s)
Cartilage/metabolism , Chondrocytes/cytology , Algorithms , Biomechanical Phenomena , Cell Membrane/metabolism , Computer Simulation , Elasticity , Finite Element Analysis , Humans , Models, Biological , Models, Statistical , Models, Theoretical , Osteoarthritis/pathology , Pressure , Software , Stress, Mechanical , Tensile Strength , Time Factors
6.
Clinics (Sao Paulo) ; 66(8): 1431-6, 2011.
Article in English | MEDLINE | ID: mdl-21915496

ABSTRACT

INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.


Subject(s)
Cartilage, Articular/metabolism , Collagen/analysis , Proteoglycans/analysis , Animals , Cartilage, Articular/chemistry , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cattle , Cell Count , Cell Survival , Collagen/metabolism , Culture Techniques , Proteoglycans/metabolism , Time Factors
7.
Med Eng Phys ; 33(4): 407-10, 2011 May.
Article in English | MEDLINE | ID: mdl-21146440

ABSTRACT

The investigation of patellar tendon reflex involves development of a reflex hammer holder, kinematic data collection and analysis of patellar reflex responses using motion analysis techniques. The main aim of this research is to explore alternative means of assessing reflexes as a part of routine clinical diagnosis. The motion analysis system was applied to provide quantitative data which is a more objective measure of the patellar tendon reflex. Kinematic data was collected from 28 males and 22 females whilst subjected to a knee jerk test. Further analysis of kinematic data was performed to predict relationships which might affect the patellar tendon reflex. All subjects were seated on a high stool with their legs hanging freely within the capture volume of the motion analysis system. Knee jerk tests were applied to all subjects, on both sides of the leg, by eliciting hypo, hyper, and normal reflexes. An additional reinforcement technique called the Jendrassik manoeuvre was also performed under the same conditions to elicit a normal patellar tendon reflex. The comparison of reflex response between genders showed that female subjects generally had a greater response compared to males. However, the difference in reflex response between the left leg and the right leg was not significant. Tapping strength to elicit a hyper-reflex produced greater knee-jerk compared to the normal clinical tapping strength. All results were in agreement with clinical findings and results found by some early researchers.


Subject(s)
Movement/physiology , Patellar Ligament/physiology , Reflex/physiology , Female , Humans , Male , Mechanical Phenomena , Sex Characteristics , Young Adult
8.
Clinics ; 66(8): 1431-1436, 2011. ilus
Article in English | LILACS | ID: lil-598400

ABSTRACT

INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.


Subject(s)
Animals , Cattle , Cartilage, Articular/metabolism , Collagen/analysis , Proteoglycans/analysis , Cell Count , Cell Survival , Culture Techniques , Cartilage, Articular/chemistry , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Collagen/metabolism , Proteoglycans/metabolism , Time Factors
9.
Acta Bioeng Biomech ; 11(4): 37-43, 2009.
Article in English | MEDLINE | ID: mdl-20405814

ABSTRACT

Conventionally, patellar tendon-bearing (PTB) sockets, which need high dexterity of prosthetist, are widely used. Lack of chartered and experienced prosthetist has often led to painful experience of wearing prosthesis and this will in turn deter the patients to wear the prosthesis, which will further aggravate stump shrinkage. Thus, the hydrostatic socket which demands relatively lower level of fabricating skill is proposed to replace the PTB socket in order to produce the equivalent, if not better, quality of support to the amputee patients. Both sockets' pressure profiles are studied and compared using finite element analysis (FEA) software. Three-dimensional models of both sockets were developed using MIMICS software. The analysis results showed that hydrostatic socket did exhibit more uniform pressure profiles than that of PTB socket. PTB socket showed pressure concentration near the proximal brim of the socket and also at the distal fibula. It was also found that the pressure magnitude in hydrostatic socket is relatively lower than that of PTB socket.


Subject(s)
Patellar Ligament/physiopathology , Amputation Stumps/physiopathology , Amputation Stumps/surgery , Amputees/rehabilitation , Artificial Limbs , Biomechanical Phenomena , Finite Element Analysis , Humans , Hydrostatic Pressure , Malaysia , Models, Biological , Patellar Ligament/surgery , Weight-Bearing/physiology
10.
J Cell Physiol ; 209(2): 389-97, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16883605

ABSTRACT

Mechanical loading modulates cartilage homeostasis through the control of matrix synthesis and catabolism. However, the mechanotransduction pathways through which chondrocytes detect different loading conditions remain unclear. The present study investigated the influence of cyclic compression on intracellular Ca2+ signalling using the well-characterised chondrocyte-agarose model. Cells labelled with Fluo4 were visualised using confocal microscopy following a period of 10 cycles of compression between 0% and 10% strain. In unstrained agarose constructs, not subjected to cyclic compression, a subpopulation of approximately 45% of chondrocytes exhibited spontaneous global Ca2+ transients with mean transient rise and fall times of 19.4 and 29.4 sec, respectively. Cyclic compression modulated global Ca2+ signalling by increasing the percentage of cells exhibiting Ca2+ transients (population modulation) and/or reducing the rise and fall times of these transients (transient shape modulation). The frequency and strain rate of compression differentially modulated these Ca2+ signalling characteristics providing a potential mechanism through which chondrocytes may distinguish between different loading conditions. Treatment with apyrase, gadolinium and the P2 receptor blockers, suramin and basilen blue, significantly reduced the percentage of cells exhibiting Ca2+ transients following cyclic compression, such that the mechanically induced upregulation of Ca2+ signalling was completely abolished. Thus cyclic compression appears to activate a purinergic pathway involving the release of ATP followed by the activation of P2 receptors causing a combination of extracellular Ca2+ influx and intracellular Ca2+ release. Knowledge of this fundamental cartilage mechanotransduction pathway may lead to improved therapeutic strategies for the treatment of cartilage damage and disease.


Subject(s)
Calcium Signaling/physiology , Chondrocytes/cytology , Chondrocytes/metabolism , Purines/metabolism , Animals , Cattle , Mechanotransduction, Cellular/physiology , Models, Biological , Stress, Mechanical , Time Factors
11.
Arch Biochem Biophys ; 444(1): 45-51, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16289021

ABSTRACT

Mechanical loading is necessary for the development and maintenance of healthy articular cartilage through the control of extracellular matrix synthesis and catabolism. However, the underlying process of chondrocyte mechanotransduction remains unclear. This study examined the influence of cyclic compression on intracellular calcium (Ca(2+)) signalling within isolated articular chondrocytes cultured in agarose constructs. A validated experimental system was developed for applying controlled cyclic cell deformation. Cell-agarose constructs were subjected to 1Hz cyclic compression between 0 and 10% gross strain for 1, 10, 100 or 300 cycles. The cells were subsequently visualised for 300s in the unstrained state using confocal microscopy and the Ca(2+) indicator, Fluo-4 AM. Within unloaded control constructs, a sub-population of approximately 50% of chondrocytes exhibited characteristic spontaneous Ca(2+) transients each lasting approximately 40-60s. Cyclic compression, for only 1 cycle, significantly up-regulated the percentage of cells exhibiting Ca(2+) transients in the subsequent 5min period (p<0.05). Increasing the number of cycles to 10 or 100 had no additional effect. The up-regulated Ca(2+) signalling was maintained for up to 5min before returning to basal levels. By contrast, 300 cycles were followed by Ca(2+) signalling that was not significantly different from that in unloaded controls. However, this response was shown to be due to the increased time following the start of compression. In conclusion, this study indicates that chondrocyte Ca(2+) signalling is stimulated by dynamic compression, probably mediated by cyclic cell deformation. The overall response appears to be independent of the number of cycles or duration of cyclic compression. The sustained up-regulation of Ca(2+) signalling after 1, 10 or 100 cycles suggests the involvement of an autocrine-paracrine signalling mechanism. Furthermore, the reduced response following 300 cycles indicates a possible receptor desensitisation mechanism. Therefore, Ca(2+) signalling may be part of a mechanotransduction pathway through which chondrocyte populations can modulate their metabolic activity in response to changing mechanical stimuli.


Subject(s)
Calcium Signaling , Chondrocytes/metabolism , Mechanotransduction, Cellular , Animals , Cartilage, Articular/chemistry , Cattle , Cells, Cultured , Chondrocytes/chemistry , Sepharose/chemistry , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...