Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38202502

ABSTRACT

To develop a potential cancer treatment, we formulated a novel drug delivery platform made of poly(lactic-co-glycolic) acid (PLGA) and used a combination of an emerging siRNA technology and an extracted natural substance called catechins. The synthesized materials were characterized to determine their properties, including morphology, hydrodynamic size, charge, particle stability, and drug release profile. The therapeutic effect of AFP-siRNA and epigallocatechin gallate (EGCG) was revealed to have remarkable cytotoxicity towards HepG2 when in soluble formulation. Notably, the killing effect was enhanced by the co-treatment of AFP-siRNA-loaded PLGA and EGCG. Cell viability significantly dropped to 59.73 ± 6.95% after treatment with 12.50 µg/mL of EGCG and AFP-siRNA-PLGA. Meanwhile, 80% of viable cells were observed after treatment with monotherapy. The reduction in the survival of cells is a clear indication of the complementary action of both active EGCG and AFP-siRNA-loaded PLGA. The corresponding cell death was involved in apoptosis, as evidenced by the increased caspase-3/7 activity. The combined treatment exhibited a 2.5-fold increase in caspase-3/7 activity. Moreover, the nanoparticles were internalized by HepG2 in a time-dependent manner, indicating the appropriate use of PLGA as a carrier. Accordingly, a combined system is an effective therapeutic strategy.

2.
Adv Healthc Mater ; 8(24): e1901182, 2019 12.
Article in English | MEDLINE | ID: mdl-31738017

ABSTRACT

CD44 is an endocytic hyaluronic acid (HA) receptor, and is overexpressed in many carcinomas. This has encouraged the use of HA to design CD44-targeting carriers. This paper is about dissecting the mechanistic role of CD44. Here, HA-decorated nanoparticles are used to deliver siRNA to both tumoral (AsPC-1, PANC-1, HT-29, HCT-116) and non-tumoral (fibroblasts, differently polarized THP-1 macrophages, HUVEC) human cell lines, evaluating the initial binding of the nanoparticles, their internalization rate, and the silencing efficiency (cyclophilin B (PPIB) gene). Tumoral cells internalize faster and experience higher silencing than non-tumoral cells. This is promising as it suggests that, in a tumor, HA nanocarriers may have limited off-target effects. More far-reaching is the inter-relation between the four parameters of the study: CD44 expression, HA binding on cell surfaces, internalization rate, and silencing efficiency. No correlation is found between binding (an early event) and any of the other parameters, whereas silencing correlates both with speed of the internalization process and CD44 expression. This study confirms on one hand that HA-based carriers can perform a targeted action, but on the other it suggests that this may not be due to a selective binding event, but rather to a later recognition leading to selective internalization.


Subject(s)
Hyaluronan Receptors/chemistry , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Cell Line , Cell Line, Tumor , Chitosan/chemistry , Drug Delivery Systems/methods , Dynamic Light Scattering , HCT116 Cells , HT29 Cells , Human Umbilical Vein Endothelial Cells , Humans , Kinetics , RNA, Small Interfering/chemistry , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...