Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Wellcome Open Res ; 7: 156, 2022.
Article in English | MEDLINE | ID: mdl-35950162

ABSTRACT

Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets.  Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.

2.
Environ Sci Pollut Res Int ; 25(22): 21937-21948, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29797195

ABSTRACT

Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 µg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.


Subject(s)
Alcoholic Intoxication/physiopathology , Methylmercury Compounds/toxicity , Motor Activity/drug effects , Adolescent , Animals , Binge Drinking/physiopathology , Cerebellum/drug effects , Cerebellum/metabolism , Environmental Pollutants/toxicity , Ethanol/administration & dosage , Ethanol/toxicity , Female , Humans , Hypokinesia/chemically induced , Mercury/administration & dosage , Mercury/pharmacokinetics , Methylmercury Compounds/administration & dosage , Rats, Wistar , Toxicity Tests, Chronic
3.
J Ethnopharmacol ; 185: 182-201, 2016 Jun 05.
Article in English | MEDLINE | ID: mdl-26944236

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Petiveria alliacea L. commonly grows in the tropical regions of the Americas such as the Amazon forest, Central America, Caribbean islands and Mexico, as well as specific regions of Africa. Popularly known by several different names including 'mucuracaá', 'guiné' and 'pipi', P. alliacea has been used in traditional medicine for the treatment of various central nervous system (CNS) disorders, such as anxiety, pain, memory deficits and seizures, as well as for its anaesthetic and sedative properties. Furthermore, the use of this species for religious ceremonies has been reported since the era of slavery in the Americas. Therefore, the present review aims to provide a critical and comprehensive overview of the ethnobotany, phytochemistry and pharmacological properties of P. alliacea, focusing on CNS pharmacological effects, in order to identify scientific lacunae and to open new perspectives for future research. MATERIALS AND METHODS: A literature search was performed on P. alliacea using ethnobotanical textbooks, published articles in peer-reviewed journals, unpublished materials, government survey reports and scientific databases such as PubMed, Scopus, Web of Science, Science Direct and Google Scholar. The Plant List, International Plant Name Index and Kew Botanical Garden Plant name databases were used to validate the scientific names. RESULTS AND DISCUSSION: Crude extracts, fractions and phytochemical constituents isolated from various parts of P. alliacea show a wide spectrum of neuropharmacological activities including anxiolytic, antidepressant, antinociceptive and anti-seizure, and as cognitive enhancers. Phytochemistry studies of P. alliacea indicate that this plant contains a diversity of biologically active compounds, with qualitative and quantitative variations of the major compounds depending on the region of collection and the harvest season, such as essential oil (Petiverina), saponinic glycosides, isoarborinol-triterpene, isoarborinol-acetate, isoarborinol-cinnamate, steroids, alkaloids, flavonoids and tannins. Root chemical analyses have revealed coumarins, benzyl-hydroxy-ethyl-trisulphide, benzaldehyde, benzoic acid, dibenzyl trisulphide, potassium nitrate, b-sitosterol, isoarborinol, isoarborinol-acetate, isoarborinol-cinnamate, polyphenols, trithiolaniacine, glucose and glycine. CONCLUSIONS: Many traditional uses of P. alliacea have now been validated by modern pharmacology research. The available data reviewed here support the emergence of P. alliacea as a potential source for the treatment of different CNS disorders including anxiety, depression, pain, epilepsy and memory impairments. However, further studies are certainly required to improve the knowledge about the mechanisms of action, toxicity and efficacy of the plant as well as about its bioactive compounds before it can be approved in terms of its safety for therapeutic applications.


Subject(s)
Central Nervous System/drug effects , Ethnobotany , Phytochemicals/chemistry , Phytolaccaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL
...