Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 214(Pt 1): 113742, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35753376

ABSTRACT

The synthesis of bilayer heterojunctions has received considerable attention recently. Fabrication of novel bilayer composites is of significant interest to improve their photocatalytic efficiency. In this study, molybdenum disulfide (MoS2), a layered dichalcogenide material exhibiting unique properties, in combination with graphitic carbon nitride (g-C3N4), a carbon-based layered material, was fabricated with small amounts of zinc oxide (ZnO). Three composites, MoS2/g-C3N4, MoS2/ZnO, and MoS2/g-C3N4/ZnO were prepared via a simple exfoliation method and characterized by various physicochemical methods. The Z-scheme charge transfer mechanism in the prepared ternary composite improves efficiency by inhibiting the recombination rate of electron-hole pairs. It has shown excellent performance in degrading a major water contaminant, malachite green (MG) dye, under visible light irradiation.

2.
Environ Sci Pollut Res Int ; 28(37): 52202-52215, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34003439

ABSTRACT

In this study, flake-like MoO3-ZnO composite was prepared using a simple and robust electrochemical setup. The composite was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, photoluminescence, zeta potential analysis, and electrochemical impedance study. The modified ZnO shows a remarkable catalytic activity towards the photodegradation of three potentially hazardous dyes, malachite green, crystal violet, and methylene blue. More than 95% of both malachite green and crystal violet degraded within 140 min under visible light irradiation. Scavenger studies reveal that OH· radicals produced by the photo-separated charges on MoO3-ZnO are responsible for the degradation of all three dyes. The photoactive charge carriers show less recombination rate as evidenced by the photoluminescence spectrum due to the interparticle charge migration process. This work suggests a new versatile procedure for the synthesis of MoO3-ZnO composites and establishes its photocatalytic efficacy under visible light with three common pollutant dyes found in wastewater.


Subject(s)
Zinc Oxide , Catalysis , Coloring Agents , Light , Photolysis
3.
J Photochem Photobiol B ; 187: 25-34, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30096540

ABSTRACT

The effect of surfactant and dopant on the properties of zinc oxide nanoparticles were studied by preparing polyethylene glycol (PEG) capped ZnO and tungsten doped PEG capped ZnO nanoparticles via the electrochemical method. These nanoparticles were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet Diffuse Reflection Spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM) and Electron Dispersive Analysis of X Rays (EDAX). The photocatalytic degradation of malachite green dye using these nanoparticles was studied under visible light. The effects of various reaction parameters like dye concentration, catalyst concentration, pH and time were studied to optimize the photodegradation reaction. Reusability of these nanoparticles was studied and no significant change was observed in the degradation efficiency of PEG capped ZnO till the fourth cycle, while there was a gradual decrease in the degradation efficiency of tungsten doped PEG capped ZnO. Langmuir- Hinshelwood kinetic model well describes the photodegradation capacity and the degradation of malachite green follows pseudo-first order kinetics.Photocatalytic studies reveal that PEG capping increases the degradation properties of ZnO while tungsten doping decreases the extent of PEG capping and has a detrimental effect on the degradation properties of ZnO. The prepared nanoparticles exhibit significant antibacterial properties against gram-positive Bacillus cereus and gram-negative Escherichia coli bacterial strains by agar well diffusion method.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Catalysis , Coloring Agents/chemistry , Disk Diffusion Antimicrobial Tests , Electrochemical Techniques , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Light , Metal Nanoparticles/toxicity , Microscopy, Electron, Scanning , Photolysis/drug effects , Photolysis/radiation effects , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Tungsten/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...