ABSTRACT
Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.
ABSTRACT
Rabies, a zoonotic viral disease, poses a significant threat due to its adaptability to diverse environments. Herbivore rabies, predominantly affecting cattle, horses, and goats in Brazil, remains a concern, results in substantial losses in the livestock industry, and poses risks to public health. Rabies virus transmission, primarily through hematophagous bats in Latin America, underscores the need for effective strategies, and vaccination plays a crucial role in controlling herbivorous rabies, with systematic vaccination beingly the primary method. Efforts to control rabies in herbivores include vaccination campaigns, public awareness programs, and the enhancement of surveillance systems. Despite these initiatives, rabies persists and imposes an economic burden and a significant health risk. Economic impacts include losses in the livestock industry, trade restrictions on livestock products, and financial burdens on governments and farmers owing to control measures. Despite the considerable costs of campaigns, surveillance, and control, investing in rabies vaccination and control not only safeguards livestock, but also preserves public health, reduces human cases, and strengthens the sustainability of the livestock industry. Mitigating the impact of herbivorous rabies in Brazil requires integrated approaches and continuous investments in vaccination, surveillance, and control measures to protect public health and ensure the sustainability of the livestock industry, thus contributing to food and economic security.