Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Energy Fuels ; 38(4): 2844-2854, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38380113

ABSTRACT

Surfactant/polymer flooding allows for a significant increase in oil recovered at both laboratory and field scales. Limitations in application at the reservoir scale are, however, present and can be associated with both the complexity of the underlying displacement process and the time-intensive nature of the up-scaling workflow. Pivotal to this workflow are corefloods which serve to both validate the extent of oil recovery and extract modeling parameters used in upscaling. To enhance the understanding of the evolution of the saturation distribution within the rock sample, we present the utilization of X-ray computed tomography to image six distinct surfactant/polymer corefloods. In doing so, we visualize the formation and propagation of an oil bank by reconstructing multidimensional saturation maps. We conduct experiments on three distinct core sizes and two different surfactants, an SBDS/isbutanol formulation and an L-145-10s 90 formulation, in order to decouple the effect of these two parameters on the flow behavior observed in situ. We note that the oil production post oil bank breakthrough is primarily influenced by the surfactant choice, with the SDBS/isobutanol formulation displaying longer tailing production of a low oil cut. On the other hand, the core size dominated the extent of self-similarity of the saturation profiles with smaller cores showing less overlap in the self-similarity profiles. Consequently, we highlight the difference in applicability of a fractional flow approach to larger and smaller cores for upscaling parameter extraction and thus provide guidance for corefloods where direct imaging is not available.

2.
J Chem Eng Data ; 68(12): 3512-3524, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38115914

ABSTRACT

The equilibrium adsorption of CO2, N2, and H2 on commercially available Zeolite H-Y, Na-Y, and cation-exchanged NaTMA-Y was measured up to 3 MPa at 298.15, 313.15, 333.15, 353.15, and 393.15 K gravimetrically using a magnetic suspension balance. The chemical and textural characterization of the materials was carried out by thermogravimetric analysis, helium gravimetry, and N2 (77 K) physisorption. We report the excess and net isotherms as measured and estimates of the absolute adsorption isotherms. The latter are modeled using the simplified statistical isotherm (SSI) model to evaluate adsorbate-adsorbent interactions and parametrize the data for process modeling. When reported per unit volume of zeolite supercage, the SSI model indicates that the saturation capacity for a given gas takes the same value for the three adsorbents. The Henry's constants predicted by the model show a strong effect of the cation on the affinity of each adsorbate.

3.
Chem Mater ; 34(15): 6671-6686, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35965891

ABSTRACT

Shaped adsorbents (e.g., pellets, extrudates) are typically employed in several gas separation and sensing applications. The performance of these adsorbents is dictated by two key factors, their adsorption equilibrium capacity and kinetics. Often, adsorption equilibrium and textural properties are reported for materials. Adsorption kinetics are seldom presented due to the challenges associated with measuring them. The overarching goal of this work is to develop an approach to characterize the adsorption properties of individual shaped adsorbents with less than 100 mg of material. To this aim, we have developed an experimental dynamic sorption setup and complemented it with mathematical models, to describe the mass transport in the system. We embed these models into a derivative-free optimizer to predict model parameters for adsorption equilibrium and kinetics. We evaluate and independently validate the performance of our approach on three adsorbents that exhibit differences in their chemistry, synthesis, formulation, and textural properties. Further, we test the robustness of our mathematical framework using a digital twin. We show that the framework can rapidly (i.e., in a few hours) and quantitatively characterize adsorption properties at a milligram scale, making it suitable for the screening of novel porous materials.

4.
J Colloid Interface Sci ; 617: 94-105, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35272170

ABSTRACT

HYPOTHESIS: Transport of suspended colloids in heterogeneous porous media is a multi-scale process that exhibits anomalous behavior and cannot be described by the Fickian dispersion theory. Although many studies have documented colloids' transport at different length scales, a theoretical basis that links pore- to core-scale observations remains lacking. It is hypothesized that a recently proposed pore-scale statistical kinetic theory is able to capture the results observed experimentally. EXPERIMENTS: We implement a multi-scale approach via conducting core-flooding experiments of colloidal particles in a sandstone sample, simulating particles flowing through a sub-volume of the rock's digital twin, and developing a core-scale statistical theory for particles' residence times via upscaling the pore-scale kinetic theory. Experimental and computational results for solute transport are used as benchmark. FINDINGS: Based on good agreement across the scales achieved in our investigation, we show that the macroscopically observed anomalous transport is particle-type dependent and stems from particles' microscopic dispersion and deposition in heterogeneous flow fields. In particular, we reveal that residence-time distributions (i.e., breakthrough curve) obey a closed-form function that encompasses particles' microscopic dynamics, which allows investigations of a whole transition from pre-asymptotic to asymptotic behavior. The physical insights attained could be useful for interpreting experimental data and designing colloidal tracers.

5.
Langmuir ; 37(12): 3778-3788, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33734708

ABSTRACT

Understanding the long-term confinement of supercritical fluids in the clay pores of subsurface rocks is important for many geo-energy technologies, including geological CO2 storage. However, the adsorption properties of hydrated clay minerals remain largely uncertain because competitive adsorption experiments of supercritical fluids in the presence of water are difficult. Here, we report on the sorption properties of four source clay minerals-Ca-rich montmorillonite (STx-1b), Na-rich montmorillonite (SWy-2), illite-smectite mixed layer (ISCz-1), and illite (IMt-2)-for water at 20 °C up to relative humidity of 0.9. The measurements unveil the unsuitability of physisorption analysis by N2 (at 77 K) and Ar (at 87 K) gases to quantify the textural properties of clays because of their inability to probe the interlayers. We further measure the sorption of CO2 and CH4 on swelling STx-1b and nonswelling IMt-2, both in the absence (dehydrated at 200 °C) and the presence of sub-1W preadsorbed water (following dehydration) up to 170 bar at 50 °C. We observe enhanced sorption of CO2 and CH4 in STx-1b (50 and 65% increase at 30 bar relative to dry STx-1b, respectively), while their adsorption on IMt-2 remains unchanged, indicating the absence of competition with water. By describing the supercritical adsorption isotherms on hydrated STx-1b with the lattice density functional theory model, we estimate that the pore volume has expanded by approximately 6% through the formation of sub-nanometer pore space. By presenting a systematic approach of quantifying the smectite clay mineral's hydrated state, this study provides an explanation for the conflicting literature observations of gas uptake capacities in the presence of water.

6.
Environ Sci Technol ; 53(19): 11588-11596, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31478655

ABSTRACT

Clay minerals abound in sedimentary formations and the interaction of reservoir gases with their submicron features have direct relevance to many geoenergy applications. The quantification of gas uptake over a broad range of pressures is key toward assessing the significance of these physical interactions on enhancing storage capacity and gas recovery. We report a systematic investigation of the sorption properties of three source clay minerals-Na-rich montmorillonite (SWy-2), illite-smectite mixed layer (ISCz-1), and illite (IMt-2)-using CO2 and CH4 up to 30 MPa at 25-115 °C. The textural characterization of the clays by gas physisorption indicates that micropores are only partly accessible to N2 (77 K) and Ar (87 K), while larger uptakes are measured with CO2 (273 K) in the presence of illite. The supercritical excess sorption experiments confirm these findings while revealing differences in uptake capacities that originate from the clay-specific pore size distribution. The lattice density functional theory model describes accurately the measured sorption isotherms by using a distribution of properly weighted slit pores and clay-specific solid-fluid interaction energies, which agree with isosteric heats of adsorption obtained experimentally. The model indicates that the maximum degree of pore occupancy is universal to the three clays and the two gases, and it depends solely on temperature, reaching values near unity at the critical temperature. These observations greatly support the model's predictive capability for estimating gas adsorption on clay-bearing rocks and sediments.


Subject(s)
Carbon Dioxide , Clay , Adsorption , Aluminum Silicates , Minerals , Silicates
7.
Phys Rev E ; 99(6-1): 063105, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330681

ABSTRACT

High-resolution x-ray imaging was used in combination with differential pressure measurements to measure relative permeability and capillary pressure simultaneously during a steady-state waterflood experiment on a sample of Bentheimer sandstone 51.6 mm long and 6.1 mm in diameter. After prolonged contact with crude oil to alter the surface wettability, a refined oil and formation brine were injected through the sample at a fixed total flow rate but in a sequence of increasing brine fractional flows. When the pressure across the system stabilized, x-ray tomographic images were taken. The images were used to compute saturation, interfacial area, curvature, and contact angle. From this information relative permeability and capillary pressure were determined as functions of saturation. We compare our results with a previously published experiment under water-wet conditions. The oil relative permeability was lower than in the water-wet case, although a smaller residual oil saturation, of approximately 0.11, was obtained, since the oil remained connected in layers in the altered wettability rock. The capillary pressure was slightly negative and 10 times smaller in magnitude than for the water-wet rock, and approximately constant over a wide range of intermediate saturation. The oil-brine interfacial area was also largely constant in this saturation range. The measured static contact angles had an average of 80^{∘} with a standard deviation of 17^{∘}. We observed that the oil-brine interfaces were not flat, as may be expected for a very low mean curvature, but had two approximately equal, but opposite, curvatures in orthogonal directions. These interfaces were approximately minimal surfaces, which implies well-connected phases. Saddle-shaped menisci swept through the pore space at a constant capillary pressure and with an almost fixed area, removing most of the oil.

8.
Transp Porous Media ; 126(2): 355-378, 2019.
Article in English | MEDLINE | ID: mdl-30872879

ABSTRACT

We present an experimental study of dissolution-driven convection in a three-dimensional porous medium formed from a dense random packing of glass beads. Measurements are conducted using the model fluid system MEG/water in the regime of Rayleigh numbers, R a = 2000 - 5000 . X-ray computed tomography is applied to image the spatial and temporal evolution of the solute plume non-invasively. The tomograms are used to compute macroscopic quantities including the rate of dissolution and horizontally averaged concentration profiles, and enable the visualisation of the flow patterns that arise upon mixing at a spatial resolution of about ( 2 × 2 × 2 ) mm 3 . The latter highlights that under this Ra regime convection becomes truly three-dimensional with the emergence of characteristic patterns that closely resemble the dynamical flow structures produced by high-resolution numerical simulations reported in the literature. We observe that the mixing process evolves systematically through three stages, starting from pure diffusion, followed by convection-dominated and shutdown. A modified diffusion equation is applied to model the convective process with an onset time of convection that compares favourably with the literature data and an effective diffusion coefficient that is almost two orders of magnitude larger than the molecular diffusivity of the solute. The comparison of the experimental observations of convective mixing against their numerical counterparts of the purely diffusive scenario enables the estimation of a non-dimensional convective mass flux in terms of the Sherwood number, S h = 0.025 R a . We observe that the latter scales linearly with Ra, in agreement with both experimental and numerical studies on thermal convection over the same Ra regime.

9.
Chemphyschem ; 20(4): 524-528, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30549176

ABSTRACT

Nanoporous materials used in industrial applications (e. g., catalysis and separations) draw their functionality from properties at the nanoscale (1-10 Å). When shaped into a technical form these solids reveal spatial variations in the same properties over much larger length scales (1 µm-1 cm). The multiscale characterization of these systems is impaired by the trade-off between sample size and image resolution that is bound to the use of most imaging techniques. We show here the application of X-ray computed tomography for the non-invasive spatial characterization of a zeolite/activated carbon adsorbent bed across three orders of magnitude in scale. Through the unique combination of gas adsorption isotherms measured locally and their interpretation by physisorption analysis, we determine three-dimensional maps of the specific surface area and micropore volume. We further use machine learning to identify and locate the materials within the packed bed. This novel ability to reveal the extent of heterogeneity in technical porous solids will enable a deeper understanding of their function in industrial reactors. Such developments are essential towards bridging the gap between material research and process design.

10.
Langmuir ; 30(37): 10984-9, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25202821

ABSTRACT

X-ray computed tomography is applied to image gas adsorption in nanoporous solids. The equations are developed to calculate rigorous measures of adsorption, such as the excess adsorbed amount, by applying a dual-scanning technique. This approach is validated by considering the CO2/13X zeolite system in a fixed-bed adsorber, and multidimensional patterns are obtained of key characteristic properties, such as bed porosity, excess adsorption, and density of the adsorbed phase. The quantification of the spatial variability of the adsorbed amount within the system represents a major novelty with regards to conventional techniques. The ability to quantify adsorption with such a level of observational detail discloses unparalleled opportunities to interrogate and revisit adsorption processes in porous media.

11.
Langmuir ; 24(17): 9531-40, 2008 Sep 02.
Article in English | MEDLINE | ID: mdl-18680385

ABSTRACT

Data on the adsorption behavior of CO 2, CH 4, and N 2 on coal are needed to develop enhanced coalbed methane (ECBM) recovery processes, a technology where the recovery of CH 4 is enhanced by injection of a gas stream consisting of either pure CO 2, pure N 2, or a mixture of both. The pure, binary, and ternary adsorption of these gases on a dry coal from the Sulcis Coal Province in Italy has been measured at pressures up to 180 bar and temperatures of 45 and 70 degrees C for the pure gases and of 45 degrees C for the mixtures. The experiments were performed in a system consisting of a magnetic suspension balance using a gravimetric-chromatographic technique. The excess adsorption isotherms are successfully described using a lattice density functional theory model based on the Ono-Kondo equations exploiting information about the structure of the coal, the adsorbed gases, and the interaction between them. The results clearly show preferential adsorption of CO 2 over CH 4 and N 2, which therefore indicate that ECBM may be a viable option for the permanent storage of CO 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...