Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(5): 2642-2653, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38229565

ABSTRACT

Lipid-based drug carriers are an attractive option to solubilise poorly water soluble therapeutics. Previously, we reported that the digestion of a short tail PC lipid (2C6PC) by the PLA2 enzyme has a significant effect on the structure and stability of the micelles it forms. Here, we studied the interactions of micelles of varying composition representing various degrees of digestion with a model ordered (70 mol% DPPC & 30 mol% cholesterol) and disordered (100% DOPC) lipid membrane. Micelles of all compositions disassociated when interacting with the two different membranes. As the percentage of digestion products (C6FA and C6LYSO) in the micelle increased, the disassociation occurred more rapidly. The C6FA inserts preferentially into both membranes. We find that all micelle components increase the area per lipid, increase the disorder and decrease the thickness of the membranes, and the 2C6PC lipid molecules have the most significant impact. Additionally, there is an increase in permeation of water into the membrane that accompanies the insertion of C6FA into the DOPC membranes. We show that the natural digestion of lipid micelles result in molecular species that can enhance the permeability of lipid membranes that in turn result in an enhanced delivery of drugs.


Subject(s)
Lipid Bilayers , Micelles , Lipid Bilayers/chemistry , Water/chemistry , Permeability , Digestion
2.
J Colloid Interface Sci ; 597: 278-288, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33872884

ABSTRACT

Liquid lipid nanoparticles (LLN) are oil-in-water nanoemulsions of great interest in the delivery of hydrophobic drug molecules. They consist of a surfactant shell and a liquid lipid core. The small size of LLNs makes them difficult to study, yet a detailed understanding of their internal structure is vital in developing stable drug delivery vehicles (DDVs). Here, we implement machine learning techniques alongside small angle neutron scattering experiments and molecular dynamics simulations to provide critical insight into the conformations and distributions of the lipid and surfactant throughout the LLN. We simulate the assembly of a single LLN composed of the lipid, triolein (GTO), and the surfactant, Brij O10. Our work shows that the addition of surfactant is pivotal in the formation of a disordered lipid core; the even coverage of Brij O10 across the LLN shields the GTO from water and so the lipids adopt conformations that reduce crystallisation. We demonstrate the superior ability of unsupervised artificial neural networks in characterising the internal structure of DDVs, when compared to more conventional geometric methods. We have identified, clustered, classified and averaged the dominant conformations of lipid and surfactant molecules within the LLN, providing a multi-scale picture of the internal structure of LLNs.

3.
Small ; 17(6): e2004761, 2021 02.
Article in English | MEDLINE | ID: mdl-33470509

ABSTRACT

Self-assembled, lipid-based micelles, such as those formed by the short-chain phosphocholine, dihexanoylphosphatidylcholine (2C6PC), are degraded by the pancreatic enzyme, phospholipase A2 (PLA2). Degradation yields 1-hexanoyl-lysophosphocholine (C6LYSO) and hexanoic acid (C6FA) products. However, little is known about the behavior of these products during and after the degradation of 2C6PC. In this work, a combination of static and time-resolved small angle neutron scattering, as well as all-atom molecular dynamics simulations, is used to characterize the structure of 2C6PC micelles. In doing so a detailed understanding of the substrate and product aggregation behavior before, during and after degradation is gained. Consequently, the formation of mixed micelles containing 2C6PC, C6LYSO and C6FA is shown at every stage of the degradation process, as well as the formation of mixed C6LYSO/C6FA micelles after degradation is complete. The use of atomistic molecular dynamics has allowed us to characterize the structure of 2C6PC, 2C6PC/C6LYSO/C6FA, and C6LYSO/C6FA micelles throughout the degradation process, showing the localization of the different molecular species within the aggregates. In addition, the hydration of the 2C6PC, C6LYSO, and C6FA species both during micellization and as monomers in aqueous solution is documented to reveal the processes driving their micellization.


Subject(s)
Micelles , Molecular Dynamics Simulation , Digestion , Scattering, Small Angle
4.
Small ; 15(45): e1903156, 2019 11.
Article in English | MEDLINE | ID: mdl-31532892

ABSTRACT

Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C18:1 E10 ). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , Molecular Dynamics Simulation , Triglycerides/chemistry
5.
Analyst ; 142(24): 4678-4683, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29119998

ABSTRACT

Patulin is a toxic compound which is found predominantly in apples affected by mould rot. Since apples and apple-containing products are a popular food for the elderly, children and babies, the monitoring of the toxin is crucial. This paper describes a development of a computationally-designed polymeric adsorbent for the solid-phase extraction of patulin, which provides an effective clean-up of the food samples and allows the detection and accurate quantification of patulin levels present in apple juice using conventional chromatography methods. The developed bespoke polymer demonstrates a quantitative binding towards the patulin present in undiluted apple juice. The polymer is inexpensive and easy to mass-produce. The contributing factors to the function of the adsorbent is a combination of acidic and basic functional monomers producing a zwitterionic complex in the solution that formed stronger binding complexes with the patulin molecule. The protocols described in this paper provide a blueprint for the development of polymeric adsorbents for other toxins or different food matrices.


Subject(s)
Food Contamination/analysis , Fruit and Vegetable Juices/analysis , Patulin/analysis , Malus , Solid Phase Extraction
6.
Analyst ; 140(9): 3113-20, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25751126

ABSTRACT

Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antineoplastic Agents/administration & dosage , Curcumin/administration & dosage , Delayed-Action Preparations/chemistry , Magnets/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...