Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10941, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414834

ABSTRACT

Optimizing soil health through soil amendments is a promising strategy for enhancing rainwater efficiency for stabilizing crop production. Biochar, obtained by torrefaction of sugarcane bagasse, a byproduct from sugar mills, has a high potential for its use as a soil amendment, which can boost crop yields, but needs further field trials for its adoption in farming systems. A field study was conducted during 2019-2021 at Stoneville, Mississippi, to assess rainfed cotton (Gossypium hirsutum L.) production under four biochar levels (0, 10, 20, and 40 t ha-1) on Dundee silt loam soil. The effects of biochar on cotton growth and lint yield and quality were examined. Biochar levels had no significant impact on cotton lint and seed yield for the first two years. Still, in the third year, a significant increase in lint yield by 13 and 21.7% was recorded at 20 and 40 t ha-1 biochar levels, respectively. In the third year, lint yields were 1523, 1586, 1721, and 1854 kg ha-1 at 0, 10, 20 and 40 t ha-1 biochar levels, respectively. Similarly, cotton seed yield increased by 10.8% and 13.4% in 20 and 40 t ha-1 biochar plots. This study demonstrated that successive biochar applications at 20 or 40 t ha-1 can enhance cotton lint and seed yields under rainfed conditions. These improved yields with biochar did not produce increased net returns due to the increased production costs. Many lint quality parameters were unaffected except for micronaire, fiber strength and fiber length. However, potential long-term benefits of enhanced cotton production from biochar application beyond the length of the study merit further investigation. Additionally, biochar application is more relevant when accrued carbon credits through carbon sequestration outweigh the increased production costs due to biochar application.


Subject(s)
Gossypium , Saccharum , Cellulose , Mississippi , Soil , Edible Grain
2.
Heliyon ; 9(4): e14696, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025780

ABSTRACT

Reducing methane emissions and water use is critical for combating climate change and declining aquifers on food production. Reductions in irrigation water use and methane emissions are known benefits of practicing alternate wetting and drying (AWD) over continuous flooding (CF) water management in lowland rice (Oryza sativa L.) production systems. In a two-year (2020 and 2021) study, methane emissions from large farm-scale (∼50 ha) rice fields managed under CF and AWD in soils dominated by Sharkey clay (Sharkey clay, clay over loamy, montmorillonitic non-acid, thermic Vertic halauepet) were monitored using the eddy covariance method (EC). In the EC system, an open-path laser gas analyzer was used to monitor air methane gas density in the constant flux layer of the atmosphere over the rice-crop canopies. Total water pumped into the field for floodwater management was higher in CF compared to AWD by 24 and 14% in 2020 and 2021, respectively. Considerable variations between seasons in the amount of methane emitted from the CF and AWD treatments were observed: CF emitted 29 and 75 kg ha-1 and AWD emitted 14 and 34 kg ha-1 methane in 2020 and 2021, respectively. Notwithstanding, the extent of reduction in methane emissions due to AWD over CF was similar for each crop season (52% in 2020 and 55% in 2021). Rice grain yield harvested differed by only ±2% between AWD and CF. This investigation of large-scale system-level evaluation, using the EC method, confirmed that by practicing AWD floodwater management in rice, water pumped from aquifers could be reduced by about a quarter and methane emissions from rice fields could be cut down by about half without affecting grain yields, thereby promoting sustainable water management and greenhouse gas emission reduction during rice production in the Lower Mississippi Delta.

3.
Front Plant Sci ; 13: 894706, 2022.
Article in English | MEDLINE | ID: mdl-36003824

ABSTRACT

Soybean [Glycine max (L.) Merr.] and cotton (Gossypium hirsutum L.) are the major row crops in the USA, and growers are tending toward the twin-row system and irrigation to increase productivity. In a 2-year study (2018 and 2019), we examined the gas exchange and chlorophyll fluorescence parameters to better understand the regulatory and adaptive mechanisms of the photosynthetic components of cotton and soybean grown under varying levels of irrigations and planting geometries in a split-plot experiment. The main plots were three irrigation regimes: (i) all furrows irrigation (AFI), (ii) alternate or skipped furrow irrigation (SFI), and iii) no irrigation or rainfed (RF), and the subplots were two planting patterns, single-row (SR) and twin-row (TR). The light response curves at vegetative and reproductive phases revealed lower photosynthesis rates in the RF crops than in AFI and SFI. A higher decrease was noticed in RF soybean for light compensation point (LCP) and light saturation point (LSP) than that of RF cotton. The decrease in the maximum assimilation rate (Amax) was higher in soybean than cotton. A decrease of 12 and 17% in Amax was observed in RF soybean while the decrease is limited to 9 and 6% in RF cotton during the 2018 and 2019 seasons, respectively. Both stomatal conductance (gs) and transpiration (E) declined under RF. The moisture deficit stress resulted in enhanced operating quantum efficiency of PSII photochemistry (ΦPSII), which is probably due to increased photorespiration. The non-photochemical quenching (NPQ), a measure of thermal dissipation of absorbed light energy, and quantum efficiency of dissipation by down-regulation (ΦNPQ) increased significantly in both crops up to 50% under RF conditions. The photochemical quenching declined by 28% in soybean and 26% in cotton. It appears soybean preferentially uses non-photochemical energy dissipation while cotton uses elevated electron transport rate (ETR) under RF conditions for light energy utilization. No significant differences among SR and TR systems were observed for LCP, LSP, AQE, Amax, gs, E, ETR, and various chlorophyll fluorescence parameters. This study reveals preferential use of non-photochemical energy dissipation in soybean while cotton uses both photochemical and non-photochemical energy dissipation to protect PSI and PSII centers and ETR, although they fall under C3 species when exposed to moisture limited environments.

4.
Plants (Basel) ; 10(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208854

ABSTRACT

Livestock producers often resort to either baling or grazing of crop residues due to high hay prices and reduced supply of other forages and silage in the markets. Soil-water-crop management practices can affect residue nutrient qualities for its use as cattle feedstock. A two-year study (2018-2019) was conducted to investigate the effects of irrigation (AI, all row-irrigation; ARI, alternate row irrigation; and RF, rainfed) and planting pattern, PP (SR, single row; and TR, twin-row) on soybean (maturity group IV cv. 31RY45 Dyna-Gro) post-grain harvest residue quality such as crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), net energy for maintenance (NEM), net energy for gain (NEG), net energy for lactation (NEL), total digestible nutrients (TDN), and relative feed value (RFV). Irrigation has a significant effect on CP, ADF, NDF, and TDN while PP affected only NDF. All the above parameters were significantly affected except NEM by the contrasting climate conditions, particularly during July through August coinciding with early crop reproductive stages and maturity. The RFV values ranged from 70.4 to 81.6 and this lower range was attributable to nutrient translocation to seeds and higher lignification during plant senescence towards the grain filling stage of the crop as good quality hay records over 120 RFV. These results indicate that both irrigation and weather during soybean seed development can alter post-grain harvest residue quality parameters, thereby playing critical roles in its RFV.

5.
Sci Total Environ ; 663: 338-350, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716624

ABSTRACT

Underground aquifers that took millions of years to fill are being depleted due to unsustainable water withdrawals for crop irrigation. Concurrently, atmospheric warming due to anthropogenic greenhouse gases is enhancing demands for water inputs in agriculture. Accurate information on crop-ecosystem water use efficiencies [EWUE, amount of CO2 removed from the soil-crop-air system per unit of water used in evapotranspiration (ET)] is essential for developing environmentally and economically sustainable water management practices that also help account for CO2, the most abundant of the greenhouse gases, exchange rates from cropping systems. We quantified EWUE of corn (a C4 crop) and soybean and cotton (C3 crops) in a predominantly clay soil under humid climate in the Lower Mississippi (MS) Delta, USA. Crop-ecosystem level exchanges of CO2 and water from these three cropping systems were measured in 2017 using the eddy covariance method. Ancillary micrometeorological data were also collected. On a seasonal basis, all three crops were net sinks for CO2 in the atmosphere: corn, soybean, and cotton fixed -31,331, -23,563, and -8856 kg ha-1 of CO2 in exchange for 483, 552, and 367 mm of ET, respectively (negative values show that CO2 is fixed in the plant or removed from the air). The seasonal NEE estimated for cotton was 72% less than corn and 62% less than soybean. Half-hourly averaged maximum net ecosystem exchange (NEE) from these cropping systems were -33.6, -27.2, and -14.2 kg CO2 ha-1, respectively. Average daily NEE were -258, -169, and -65 kg CO2 ha-1, respectively. The EWUE in these three cropping systems were 53, 43, and 24 kg CO2 ha-1 mm-1 of water. Results of this investigation can help in adopting crop mixtures that are environmentally and economically sustainable, conserving limited water resources in the region.


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Glycine max/metabolism , Gossypium/metabolism , Water/metabolism , Zea mays/metabolism , Agricultural Irrigation , Crops, Agricultural/metabolism , Humidity , Mississippi
SELECTION OF CITATIONS
SEARCH DETAIL
...