Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 30(12): 1781-1788, 2020 12.
Article in English | MEDLINE | ID: mdl-33093069

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Subject(s)
COVID-19 , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Whole Genome Sequencing , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , New York City
2.
medRxiv ; 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32511587

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

3.
Thromb Haemost ; 88(5): 834-42, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12428103

ABSTRACT

In addition to their role in primary hemostasis, platelets serve to support and maintain the vascular endothelium. Platelets contain numerous growth factors including the potent angiogenic inducers VEGF and FGF-2. To characterize the function of these two platelet-associated growth factors, the effects of the addition of purified platelets to cultured endothelial cells were examined. The survival and proliferation of endothelial cells were markedly stimulated (2-3-fold and 5-15-fold respectively) by the addition of gel-filtered platelets. Acetylsalicylic acid-treated or lyophilized fixed-platelets were ineffective in supporting endothelial cell proliferation. In Transwell assays, the stimulatory effect of platelets on endothelial cells was preserved, consistent with an effect mediated by secreted factors. The combined inhibition of VEGF and FGF-2 by neutralizing antibodies, in contrast to inhibition of either alone, abrogated both platelet-induced endothelial cell survival and proliferation. FGF-2 isoforms were detected in platelet lysates, as well as in the releases of agonist-stimulated platelets. Megakaryocytes generated by ex vivo expansion of hematopoietic progenitor cells with kit ligand and thrombopoietin were analyzed for expression of FGF-2. Punctate cytoplasmic staining but no nuclear staining was observed by immunocytochemistry consistent with possible localization of the growth factor to cytoplasmic granules. The addition of platelets to cultured endothelial cells activated extracellular signal-regulated kinase (ERK) in a dose and time-dependent manner. This effect was abrogated by both anti-FGF-2 and anti-VEGF antibody. Since FGF-2 and VEGF are potent angiogenic factors and known endothelial cell survival factors, their release by platelets provides a plausible mechanism for the platelet support of vascular endothelium.


Subject(s)
Blood Platelets/physiology , Cell Communication , Endothelial Growth Factors/physiology , Endothelium, Vascular/cytology , Fibroblast Growth Factor 2/physiology , Intercellular Signaling Peptides and Proteins/physiology , Lymphokines/physiology , Blood Platelets/metabolism , Cell Division , Cell Survival , Coculture Techniques , Endothelial Growth Factors/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lymphokines/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Umbilical Veins , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
4.
Mol Cell Biol ; 22(20): 7184-92, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12242295

ABSTRACT

Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.


Subject(s)
Fibroblast Growth Factor 2/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Receptors, Fibroblast Growth Factor/chemistry , Signal Transduction , Sucrose/analogs & derivatives , Sucrose/chemistry , Animals , Crystallography, X-Ray , Dimerization , Heparin/metabolism , Mice , Models, Molecular , Protein Structure, Tertiary , Receptor, Fibroblast Growth Factor, Type 1
SELECTION OF CITATIONS
SEARCH DETAIL
...