Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 19(5): 775-784, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34665770

ABSTRACT

The detection of SARS-CoV in wastewater has been proposed as a tool for monitoring COVID-19 at the community level. Although many reports have been published about detecting viral RNA in wastewater and its presence has been linked to infected people, appropriate analytical methodologies to use this approach have not yet been established. In this study, we compared ultrafiltration, polyethylene glycol precipitation, flocculation using AlCl3, and flocculation with skim milk for the recovery of SARS-CoV-2, using RNA from patients with positive diagnoses for COVID-19 and Pseudomonas phage φ6 as the control. We also evaluated the primers for detecting the E, RdRp, and N genes of the virus, as well as different storage times. Differences in the recovery efficiencies were evident with the different concentration methods, the best being ultrafiltration and precipitation with aluminum, which had recovery rates of 42.0% and 30.0%, respectively, when virus was present at high levels. Significant differences were found between the recoveries using wastewater and deionized water and between different storage times, with better recoveries for 6 and 12 h samplings. The E gene was the only one detected in all the samples analyzed. The results show that although this approach can provide important data for studying the pandemic, clear protocols are necessary for investigations to be comparable.


Subject(s)
COVID-19 , Viruses , Humans , Pandemics , SARS-CoV-2 , Wastewater
2.
Front Cell Infect Microbiol ; 11: 686472, 2021.
Article in English | MEDLINE | ID: mdl-34485173

ABSTRACT

Several physicochemical and season factors have been related to the abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), considered hotspots of bacterial resistance. However, few studies on the subject have been carried out in tropical countries endemic for resistance mechanisms such as blaKPC. In this study, the occurrence of ARGs, particularly blaKPC, was determined throughout a WWTP, and the factors related to their abundance were explored. In 2017, wastewater samples were taken from a WWTP in Colombia every 15 days for 6 months, and a total of 44 samples were analyzed by quantitative real-time PCR. sul1, sul2, blaKPC, and ermB were found to be the most prevalent ARGs. A low average reduction of the absolute abundance ARGs in effluent with respect to influent was observed, as well as a greater absolute abundance of ARGs in the WWTP effluent in the rainy season. Factors such as temperature, pH, oxygen, total organic carbon (TOC), chemical oxygen demand (COD), and precipitation were significantly correlated with the absolute abundance of several of the ARGs evaluated. A generalized linear mixed-effects model analysis showed that dissolved oxygen and precipitation in the sampling day were important factors related to the absolute concentration of blaKPC over time. In conclusion, the abundance of ARGs in the WWTP could be influenced by endemic conditions and physicochemical and climatological parameters. Therefore, it is necessary to continuously monitor clinical relevant genes in WWTPs from different global regions, even more so in low-income countries where sewage treatment is limited.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Genes, Bacterial/genetics , Wastewater
3.
Environ Technol ; 41(25): 3297-3308, 2020 Nov.
Article in English | MEDLINE | ID: mdl-30968737

ABSTRACT

Benzophenone-3 is an organic compound widely used as a UV filter, which has been reported as water pollutant and is connected with endocrine disruption in humans and animals. Expanded granular sludge beds (EGSB) are a form of an anaerobic digestion system, which has been successfully evaluated for wastewater treatment, and the removal of different compounds, however little is known about the effect of compounds as Benzophenone-3 in the performance of EGSB systems. In this study, we evaluate the effect of BP-3 on the performance, microbial structure and metabolism of EGSB reactors. For this purpose, biogas production, removal efficiencies of BP-3 and DQO were monitored. Changes in bacteria and archaea microbial structure were investigated using PCR-DGGE, and the effect on anaerobic metabolism was evaluated by measuring the expression of mcrA and ACAs genes through qRT-PCR. The systems remained stable and efficient throughout the operation stages, with CH4 percentages greater than 55% and COD and BP-3 removal percentages greater than 90%. The presence of different concentrations of Benzophenone-3 influenced the organization of microbial communities, especially archaea. However, this did not affect the stability and performance of the EGSB systems.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Benzophenones , Bioreactors
4.
Water Sci Technol ; 80(3): 487-498, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31596260

ABSTRACT

Methylparaben and triclosan are antimicrobial agents widely used as preservatives in a variety of personal care and pharmaceutical products. Wastewater is considered the main source of these compounds in the environment. Expanded granular sludge bed (EGSB) reactors are a high rate technology for wastewater treatment based on biological processes and have been shown to be efficient in removing different types of compounds; however, little is known about the effect of contaminants such as methylparaben and triclosan on their behavior and effectiveness. In this study, we evaluate and compare the microbial and physicochemical behavior of EGSB systems during methylparaben and triclosan removal. The presence of different concentrations of pollutants had an influence on the cluster organization of microbial communities, especially bacteria. However, this did not affect the stability and performance of the EGSB systems. The banding patterns of the denaturing gradient gel electrophoresis of archaea demonstrated the constant presence and abundance of Methanosaeta concilii throughout all stages of operation, showing that this microorganism played a fundamental role in the stability of the reactors for the production of methane. The type of compound and its concentration influenced the expression of the mcrA and ACAs genes; however, these changes did not alter the stability and performance of the EGSB systems.


Subject(s)
Parabens/analysis , Triclosan/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Bioreactors , Sewage
5.
Int J Phytoremediation ; 21(4): 316-324, 2019.
Article in English | MEDLINE | ID: mdl-30648402

ABSTRACT

In this work, we evaluate the abilities of the plants Brassica juncea, Avena sativa, Brachiaria decumbens, and Medicago sativa to uptake polychlorinated biphenyls (PCBs) and induce degradation of soil microorganisms from contaminated soil. Removal of PCBs 44, 66, 118, 153, 170, and 180 was evaluated in both rhizospheric and nonrhizospheric soils. Microbial and bphA1 gene quantifications were performed by real-time PCR. The PCB concentrations in plant tissues and soil were determined, and a fluorescein diacetate (FDA) hydrolysis assay was used to measure microbial activity in soil. The removal percentages for all PCB congeners in planted soil versus unplanted control soil were statistically significant and varied between 45% and 63%. PCBs 118, 153, 138, and 170 were detected in Brachiaria decumbens roots at different concentrations. In planted soil, an increase in the concentration of bacteria was observed compared to the initial concentration and the concentration in unplanted control soil; however, no significant differences were identified between plants. The number of copies of the bphA1 gene was higher in rhizospheric versus non- rhizospheric soil for all plants at the end of the experiment. However, alfalfa and oat rhizospheric soil showed significant differences in the copy number of the bphA1 gene. In general, the concentration of fluorescein in the rhizospheric soil was greater than that in the nonrhizospheric soil. Although the plants had a positive effect on PCB removal, this effect varied depending on the type of PCB, the plant, and the soil.


Subject(s)
Microbiota , Polychlorinated Biphenyls , Soil Pollutants , Biodegradation, Environmental , Plant Roots , Soil , Soil Microbiology
6.
J Environ Sci (China) ; 28: 101-9, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25662244

ABSTRACT

The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B+S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B+S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment.


Subject(s)
DDT/metabolism , Environmental Restoration and Remediation/methods , Polysorbates/pharmacology , Soil Microbiology , Soil Pollutants/metabolism , Surface-Active Agents/pharmacology , Biodegradation, Environmental , Dichlorodiphenyl Dichloroethylene/metabolism , Dichlorodiphenyldichloroethane/metabolism , Insecticides/metabolism , Nitrogen/metabolism , Phosphorus/metabolism
7.
J Environ Sci Health B ; 46(2): 173-80, 2011.
Article in English | MEDLINE | ID: mdl-21328125

ABSTRACT

A bacterial consortium with the ability to degrade methyl parathion and p-nitrophenol, using these compounds as the only carbon source, was obtained by selective enrichment in a medium with methyl parathion. Samples were taken from Moravia, Medellin; an area that is highly contaminated, owing to the fact that it was used as a garbage dump from 1974 to 1982. Acinetobacter sp, Pseudomonas putida, Bacillus sp, Pseudomonas aeruginosa Citrobacter freundii, Stenotrophomonas sp, Flavobacterium sp, Proteus vulgaris, Pseudomonas sp, Acinetobacter sp, Klebsiella sp and Proteus sp were the microorganisms identified within the consortium. In culture, the consortium was able to degrade 150 mg L⁻¹ of methyl-parathion and p-nitrophenol in 120 h, but after adding glucose or peptone to the culture, the time of degradation decreased to 24 h. In soil, the consortium was also able to degrade 150 mg L⁻¹ of methyl parathion in 120 h at different depths and also managed to decrease the toxicity.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Methyl Parathion/metabolism , Microbial Consortia , Nitrophenols/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Bacteria/chemistry , Biodegradation, Environmental , Kinetics , Methyl Parathion/chemistry , Nitrophenols/chemistry , Soil Pollutants/chemistry
8.
Water Res ; 44(18): 5158-67, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20633918

ABSTRACT

In the work presented here, a photocatalytic system using titanium Degussa P-25 in suspension was used to evaluate the degradation of 20mg L(-1) of antibiotic oxolinic acid (OA). The effects of catalyst load (0.2-1.5 g L(-1)) and pH (7.5-11) were evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, low pH values and 1.0 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of the substrate, chemical oxygen demand, dissolved organic carbon, toxicity and antimicrobial activity on Escherichia coli cultures were evaluated. The results indicate that, under optimal conditions, after 30 min, the TiO(2) photocatalytic system is able to eliminate both the substrate and the antimicrobial activity, and to reduce the toxicity of the solution by 60%. However, at the same time, ∼53% of both initial DOC and COD remain in solution. Thus, the photocatalytical system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity. The study of OA by-products using liquid chromatography coupled with mass spectrometry, as well as the evaluation of OA degradation in acetonitrile media as solvent or in the presence of isopropanol and iodide suggest that the reaction is initiated by the photo-Kolbe reaction. Adsorption isotherm experiments in the dark indicated that under pH 7.5, adsorption corresponded to the Langmuir adsorption model, indicating the dependence of the reaction on an initial adsorption step.


Subject(s)
Anti-Bacterial Agents/chemistry , Light , Oxolinic Acid/chemistry , Titanium/chemistry , 2-Propanol/chemistry , Acetonitriles/chemistry , Adsorption/drug effects , Adsorption/radiation effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Catalysis/drug effects , Catalysis/radiation effects , Chromatography, High Pressure Liquid , Escherichia coli/drug effects , Escherichia coli/radiation effects , Hydrogen-Ion Concentration/drug effects , Hydrogen-Ion Concentration/radiation effects , Mass Spectrometry , Microbial Sensitivity Tests , Oxolinic Acid/pharmacology , Oxolinic Acid/toxicity , Photolysis/drug effects , Photolysis/radiation effects , Potassium Iodide/chemistry , Solutions , Solvents/chemistry , Suspensions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...