Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(4): 3484-3501, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666949

ABSTRACT

Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.

2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069113

ABSTRACT

Stroke remains a debilitating cerebrovascular condition associated with oxidative stress, while COVID-19 has emerged as a global health crisis with multifaceted systemic implications. This study investigates the hypothesis that patients experiencing acute ischemic stroke alongside COVID-19 exhibit elevated oxidative stress markers and altered antioxidant defense mechanisms compared to those with acute ischemic stroke. We conducted a single-center prospective cross-sectional study to investigate oxidative stress balance through oxidative damage markers: TBARS (thiobarbituric acid reactive substances level) and PCARB (protein carbonyls); antioxidant defense mechanisms: TAC (total antioxidant capacity), GPx (glutathione peroxidase), GSH (reduced glutathione), CAT (catalase), and SOD (superoxide dismutase); as well as inflammatory response markers: NLR (neutrophil-to-lymphocyte ratio), CRP (C-reactive protein), and ESR (erythrocyte sedimentation rate). Statistical analyses and correlation models were employed to elucidate potential associations and predictive factors. Our results revealed increased oxidative stress, predominantly indicated by elevated levels of TBARS in individuals experiencing ischemic stroke alongside a concurrent COVID-19 infection (p < 0.0001). The Stroke-COVID group displayed notably elevated levels of GSH (p = 0.0139 *), GPx (p < 0.0001 ****), SOD (p = 0.0363 *), and CAT (p = 0.0237 *) activities. Multivariate analysis found a significant association for TBARS (p < 0.0001 ****), PCARB (p = 0.0259 *), and GPx activity (p < 0.0001 ****), together with NLR (p = 0.0220 *) and CRP (p = 0.0008 ***). Notably, the interplay between stroke and COVID-19 infection appears to amplify oxidative damage, potentially contributing to exacerbated neurological deficits and poorer outcomes. This study highlights the intricate relationship between oxidative stress, inflammation, and concurrent health conditions. Understanding these interactions may open avenues for novel therapeutic strategies aimed at ameliorating oxidative damage in patients with acute ischemic stroke and COVID-19, ultimately improving their prognosis and quality of life.


Subject(s)
COVID-19 , Ischemic Stroke , Stroke , Humans , Antioxidants/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Ischemic Stroke/complications , Cross-Sectional Studies , Prospective Studies , Quality of Life , Biomarkers/metabolism , COVID-19/complications , Oxidative Stress/physiology , Catalase/metabolism , Glutathione Peroxidase/metabolism , Stroke/complications , Superoxide Dismutase/metabolism , Defense Mechanisms
3.
Genes (Basel) ; 14(8)2023 07 27.
Article in English | MEDLINE | ID: mdl-37628595

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a common metabolic disorder that results from complex interactions of both environmental and genetic factors. Many single nucleotide polymorphisms (SNPs), including noncoding RNA genes, have been investigated for their association with susceptibility to T2DM and its complications, with little evidence available regarding Caucasians. The aim of the present study was to establish whether four miRNA SNPs (miR-27a rs895819 T>C, miR-146a rs2910164 G>C, miR-196a2 rs11614913 C>T, and miR-499a rs3746444 A>G) are correlated with susceptibility to T2DM and/or diabetic polyneuropathy (DPN) in a Romanian population. A total of 167 adult T2DM patients and 324 age- and sex-matched healthy controls were included in our study. miRNA SNPs were detected by real-time PCR using a TaqMan genotyping assay. A significant association with T2DM was observed only for the miR-499a rs3746444 A>G SNP in all the tested models, and the frequencies of both the miR-499a rs3746444 AG and the GG genotypes were higher in the T2DM patients compared to the controls. No correlation was observed for the miR-27a rs895819 T>C, miR-146a rs2910164 G>C, or miR-196a2 rs11614913 C>T SNPs in any genetic model. When we assessed the association of these SNPs with DPN separately, we found a positive association for the miR-499a rs3746444 SNP in both codominant and dominant models (OR 6.47, 95% CI: 1.71-24.47; OR 2.30, 95% CI: 1.23-4.29, respectively). In conclusion, this study shows that miR-499a rs3746444 A>G may influence both T2DM and DPN susceptibility, with carriers of the GG genotype and the G allele being at an increased risk in the Romanian population.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , MicroRNAs , Adult , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/genetics , Romania , Polymorphism, Single Nucleotide , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL