Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1358788, 2024.
Article in English | MEDLINE | ID: mdl-38533329

ABSTRACT

In the framework of the H2020 project CROCODILE, the recovery of Co from oxidized ores by reductive bioleaching has been studied. The objective was to reduce Fe(III) to Fe(II) to enhance the dissolution of Co from New-Caledonian limonitic laterites, mainly composed of goethite and Mn oxides. This study focused on the Fe(III) bioreduction which is a relevant reaction of this process. In the first step, biomass growth was sustained by aerobic bio-oxidation of elemental sulfur. In the second step, the biomass anaerobically reduced Fe(III) to Fe(II). The last step, which is not in the scope of this study, was the reduction of limonites and the dissolution of metals. This study aimed at assessing the Fe(III) bioreduction rate at 35°C with a microbial consortium composed predominantly of Sulfobacillus (Sb.) species as the iron reducers and Acidithiobacillus (At.) caldus. It evaluated the influence of the biomass concentration on the Fe(III) bioreduction rate and yield, both in batch and continuous mode. The influence of the composition of the growth medium on the bioreduction rate was assessed in continuous mode. A mean Fe(III) bioreduction rate of 1.7 mg·L-1·h-1 was measured in batch mode, i.e., 13 times faster than the abiotic control (0.13 mg·L-1·h-1). An increase in biomass concentrations in the liquid phase from 4 × 108 cells·mL-1 to 3 × 109 cells·mL-1 resulted in an increase of the mean Fe(III) bioreduction rate from 1.7 to 10 mg·L-1·h-1. A test in continuous stirred tank reactors at 35°C resulted in further optimization of the Fe(III) bioreduction rate which reached 20 mg·L-1·h-1. A large excess of nutrients enables to obtain higher kinetics. The determination of this kinetics is essential for the design of a reductive bioleaching process.

2.
Res Microbiol ; 175(1-2): 104112, 2024.
Article in English | MEDLINE | ID: mdl-37549769

ABSTRACT

Within the European research project NEMO, a bioleaching strategy was developed for efficient metal extraction from bioleach residue currently heap-leached at Sotkamo (Finland) that still contains sulphidic minerals and valuable metals (Ni, Zn, Co, Cu). The strategy of gradually increasing the solid content with 5% steps allowed the adaptation of the consortium up to 20% (w/w) solid content, with efficient metal dissolution and same dominant bacteria. Largest proportions of Sulfobacillusthermosulfidooxidans while Eh increased suggested it to be most involved in iron oxidation. Acidithiobacilluscaldus was rather found when pH stabilized, in line with a production of protons from sulphur oxidation that maintained low pH. 'Acidithiomicrobium' P2 was favoured towards the end of the runs and at 20% (w/w) solids possibly due to its tolerance to Ni. The use of gene abundance to evaluate biomass in the pulp provided complementary results to classical cell counts in the liquid phase, and suggested a key role of bacteria associated to mineral particles in iron oxidation. Scaling-up in 21-L stirred-tank reactor at 20% (w/w) solids had no detrimental effect on bioleaching and confirmed metal extraction rates. 'Acidithiomicrobium' P2 and Sb. thermosulfidooxidans remained main actors. However, the biological activity was considerably reduced at 30% (w/w) solid concentration, which may be due to a too drastic environmental change for the bacteria to adapt to higher solid concentration. Efficient bioleaching of Sotkamo bioleaching residue at high solid concentration was demonstrated, as well as the robustness of the selected moderately thermophilic consortium, at laboratory and pilot scales.


Subject(s)
Iron , Metals , Hydrogen-Ion Concentration , Bacteria/genetics , Minerals , Sulfides
3.
J Hazard Mater ; 424(Pt A): 127300, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34607027

ABSTRACT

Volatilization of hazardous hydrophobic organic compounds is often observed in many water, wastewater and soil treatment (bio)processes. Several models have been developed to quantify and predict gas-liquid pollutant transfer, being the proportionality coefficient model (PCM) one of the most commonly used, particularly in wastewater treatment. The PCM is based on the use of oxygen as a reference compound, which has a low resistance to the transfer in the gas phase. However, this resistance might be important for (semi-)volatile organic compounds - or (semi-)VOCs, which may render the use of the PCM model inaccurate. This study proposes an experimental methodology and a modeling approach for the use of the two-reference compound model (2RCM) that considers both the liquid-side and the gas-side resistances, by using water and oxygen as references. Results showed that the 2RCM predicts more accurately the overall mass transfer coefficients than the PCM for a VOC and two semi-VOCs tested in this study. In addition, the 2RCM was found to be a more robust method to estimate mass transfer coefficient of any compound and its use can be extrapolated to all substances. Finally, the relevance and limitations of both models was established.


Subject(s)
Volatile Organic Compounds , Water Purification , Volatilization , Water
4.
J Hazard Mater ; 339: 427-449, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28715703

ABSTRACT

Hydrophobic organic compound (HOC)-contaminated soils are a great environmental and public health concern nowadays. Further research is necessary to develop environmental friendly biotechnologies that allows public and private sectors to implement efficient and adaptable treatment approaches. Aerobic soil-slurry bioreactor technology has emerged as an effective and feasible technique with a high remediation potential, especially for silt and clay soil fractions, which often contain the highest pollutant concentration levels and are usually difficult to remove by implementing conventional methods. However, the mechanisms involved in the HOC removal in bioslurry reactor are still not completely understood. Gas-liquid and solid-liquid mass transfer, mass transport and biodegradation phenomena are the main known processes taking place in slurry bioreactors. This review compiles the most up-to-date information available about these phenomena and tries to link them, enlightening the possible interactions between parameters. It gathers the basic information needed to understand the complex bioremediation technology and raises awareness of some considerations that should be made.


Subject(s)
Bioreactors , Organic Chemicals/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Geologic Sediments , Hydrophobic and Hydrophilic Interactions , Organic Chemicals/chemistry , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...