Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Sci ; 307: 110905, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33902861

ABSTRACT

Contrary to animals, little is known in plants about enzymes able to produce fatty acid epoxides. In our attempt to find and characterize a new fatty acid epoxygenase in Arabidopsis thaliana, data mining brought our attention on CYP77B1. Modification of the N-terminus was necessary to get enzymatic activity after heterologous expression in yeast. The common plant fatty acid C18:2 was converted into the diol 12,13-dihydroxy-octadec-cis-9-enoic acid when incubated with microsomes of yeast expressing modified CYP77B1 and AtEH1, a soluble epoxide hydrolase. This diol originated from the hydrolysis by AtEH1 of the epoxide 12,13-epoxy-octadec-cis-9-enoic acid produced by CYP77B1. A spatio-temporal study of CYP77B1 expression performed with RT-qPCR revealed the highest level of transcripts in flower bud while, in open flower, the enzyme was mainly present in pistil. CYP77B1 promoter-driven GUS expression confirmed reporter activities in pistil and also in stamens and petals. In silico co-regulation data led us to hypothesize that CYP77B1 could be involved in cutin synthesis but when flower cutin of loss-of-function mutants cyp77b1 was analyzed, no difference was found compared to cutin of wild type plants. Phylogenetic analysis showed that CYP77B1 is strictly conserved in flowering plants, suggesting a specific function in this lineage.


Subject(s)
Arabidopsis/enzymology , Cytochrome P-450 Enzyme System/metabolism , Epoxy Compounds/metabolism , Fatty Acids/metabolism , Magnoliopsida/enzymology , Oxygenases/metabolism
2.
Bioorg Med Chem Lett ; 30(22): 127600, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33035678

ABSTRACT

The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce anticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-inflammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be developed to treat a wide variety of human disorders.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Disease , Humans , Ligands , Molecular Structure , Small Molecule Libraries/chemistry
3.
New Phytol ; 215(1): 173-186, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28497532

ABSTRACT

Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase possibly involved in cutin monomer synthesis. We expressed AtEH1 in yeast and studied its localization in vivo. We also analyzed the composition of cutin from A. thaliana lines in which this gene was knocked out. Incubation of recombinant AtEH1 with epoxy fatty acids confirmed its capacity to hydrolyze epoxides of C18 fatty acids into vicinal diols. Transfection of Nicotiana benthamiana leaves with constructs expressing AtEH1 fused to enhanced green fluorescent protein (EGFP) indicated that AtEH1 is localized in the cytosol. Analysis of cutin monomers in loss-of-function Ateh1-1 and Ateh1-2 mutants showed an accumulation of 18-hydroxy-9,10-epoxyoctadecenoic acid and a concomitant decrease in corresponding vicinal diols in leaf and seed cutin. Compared with wild-type seeds, Ateh1 seeds showed delayed germination under osmotic stress conditions and increased seed coat permeability to tetrazolium red. This work reports a physiological role for a plant EH and identifies AtEH1 as a new member of the complex machinery involved in cutin synthesis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Epoxide Hydrolases/physiology , Membrane Lipids/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/analysis , Arabidopsis Proteins/genetics , Cytosol/metabolism , Epoxide Hydrolases/analysis , Epoxide Hydrolases/genetics , Likelihood Functions , Phylogeny , Sequence Alignment
4.
Subcell Biochem ; 86: 405-26, 2016.
Article in English | MEDLINE | ID: mdl-27023244

ABSTRACT

Jasmonates (JAs) constitute a major class of plant regulators that coordinate responses to biotic and abiotic threats and important aspects of plant development. The core biosynthetic pathway converts linolenic acid released from plastid membrane lipids to the cyclopentenone cis-oxo-phytodienoic acid (OPDA) that is further reduced and shortened to jasmonic acid (JA) in peroxisomes. Abundant pools of OPDA esterified to plastid lipids also occur upon stress, mainly in the Arabidopsis genus. Long thought to be the bioactive hormone, JA only gains its pleiotropic hormonal properties upon conjugation into jasmonoyl-isoleucine (JA-Ile). The signaling pathway triggered when JA-Ile promotes the assembly of COI1-JAZ (Coronatine Insensitive 1-JAsmonate Zim domain) co-receptor complexes has been the focus of most recent research in the jasmonate field. In parallel, OPDA and several other JA derivatives are recognized for their separate activities and contribute to the diversity of jasmonate action in plant physiology. We summarize in this chapter the properties of different bioactive JAs and review elements known for their perception and signal transduction. Much progress has also been gained on the enzymatic processes governing JA-Ile removal. Two JA-Ile catabolic pathways, operating through ω-oxidation (cytochromes P450) or conjugate cleavage (amido hydrolases) shape signal dynamics to allow optimal control on defense. JA-Ile turnover not only participates in signal attenuation, but also impact the homeostasis of the entire JA metabolic pathway.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Fatty Acids/metabolism , Plants/metabolism , Signal Transduction
5.
Plant Physiol ; 169(4): 2553-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26443676

ABSTRACT

The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.


Subject(s)
Fruit/genetics , Lipids/biosynthesis , Solanum lycopersicum/genetics , Transcription Factors/metabolism , Fruit/growth & development , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Phenotype , Plant Epidermis/genetics , Plant Epidermis/growth & development , Plant Epidermis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/genetics
6.
Phytochemistry ; 117: 388-399, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26164240

ABSTRACT

The role and fate of Jasmonoyl-Phenylalanine (JA-Phe), an understudied conjugate in the jasmonate pathway remain to be unraveled. We addressed here the possibility of JA-Phe oxidative turnover by cytochrome P450s of the CYP94 family. Leaf wounding or fungal infection in Arabidopsis resulted in accumulation of JA-Phe, 12-hydroxyl (12OH-JA-Phe) and 12-carboxyl (12COOH-JA-Phe) derivatives, with patterns differing from those previously described for Jasmonoyl-Isoleucine. In vitro, yeast-expressed cytochromes P450 CYP94B1, CYP94B3 and CYP94C1 differentially oxidized JA-Phe to 12-hydroxyl, 12-aldehyde and 12-carboxyl derivatives. Furthermore, a new aldehyde jasmonate, 12CHO-JA-Ile was detected in wounded plants. Metabolic analysis of CYP94B3 and CYP94C1 loss- and gain-of-function plant lines showed that 12OH-JA-Phe was drastically reduced in cyp94b3 but not affected in cyp94c1, while single or double mutants lacking CYP94C1 accumulated less 12COOH-JA-Phe than WT plants. This, along with overexpressing lines, demonstrates that hydroxylation by CYP94B3 and carboxylation by CYP94C1 accounts for JA-Phe turnover in planta. Evolutionary study of the CYP94 family in the plant kingdom suggests conserved roles of its members in JA conjugate homeostasis and possibly in adaptative functions. Our work extends the range and complexity of JA-amino acid oxidation by multifunctional CYP94 enzymes in response to environmental cues.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cyclopentanes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Isoleucine/analogs & derivatives , Phenylalanine/analogs & derivatives , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Flowers/metabolism , Isoleucine/metabolism , Mutation , Oxidation-Reduction , Phenylalanine/metabolism , Phylogeny
7.
J Exp Bot ; 66(13): 3879-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25903915

ABSTRACT

Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/microbiology , Botrytis/physiology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Isoleucine/analogs & derivatives , Oxylipins/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Botrytis/drug effects , Cytochrome P-450 Enzyme System/genetics , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Isoleucine/pharmacology , Metabolic Networks and Pathways/drug effects , Models, Biological , Mutation/genetics , Oxidation-Reduction , Plant Diseases/microbiology , Salicylic Acid/metabolism
8.
J Integr Plant Biol ; 56(10): 979-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24798002

ABSTRACT

Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Flowers/growth & development , Oryza/enzymology , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Lauric Acids/metabolism , Membrane Lipids/metabolism , Molecular Sequence Data , Oryza/genetics , Oryza/growth & development , Phenotype , Waxes/metabolism
9.
J Biol Chem ; 288(44): 31701-14, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24052260

ABSTRACT

Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-L-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.


Subject(s)
Amidohydrolases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cyclopentanes/metabolism , Isoleucine/analogs & derivatives , Oxylipins/metabolism , Plant Leaves/enzymology , Amidohydrolases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Isoleucine/genetics , Isoleucine/metabolism , Oxidation-Reduction , Plant Leaves/genetics
10.
New Phytol ; 197(2): 468-480, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23205954

ABSTRACT

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Subject(s)
Body Patterning , Fruit/growth & development , Plant Epidermis/growth & development , Plant Proteins/metabolism , Solanum lycopersicum/growth & development , Transcription Factors/metabolism , Alleles , Amino Acid Sequence , Arabidopsis/genetics , Body Patterning/genetics , Colletotrichum/physiology , Down-Regulation/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Membrane Lipids/metabolism , Molecular Sequence Data , Mutation/genetics , Phenotype , Plant Epidermis/genetics , Plant Proteins/chemistry , Plants, Genetically Modified , Polymerization , Promoter Regions, Genetic/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Waxes/metabolism
11.
J Biol Chem ; 287(16): 13477-86, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22393051

ABSTRACT

Infection of insects by the entomopathogenic fungus Beauveria bassiana proceeds via attachment and penetration of the host cuticle. The outermost epicuticular layer or waxy layer of the insect represents a structure rich in lipids including abundant amounts of hydrocarbons and fatty acids. A member of a novel cytochrome P450 subfamily, CYP52X1, implicated in fatty acid assimilation by B. bassiana was characterized. B. bassiana targeted gene knockouts lacking Bbcyp52x1 displayed reduced virulence when topically applied to Galleria mellonella, but no reduction in virulence was noted when the insect cuticle was bypassed using an intrahemoceol injection assay. No significant growth defects were noted in the mutant as compared with the wild-type parent on any lipids substrates tested including alkanes and fatty acids. Insect epicuticle germination assays, however, showed reduced germination of ΔBbcyp52x1 conidia on grasshopper wings as compared with the wild-type parent. Complementation of the gene-knock with the full-length gene restored virulence and insect epicuticle germination to wild-type levels. Heterologous expression of CYP52X1 in yeast was used to characterize the substrate specificity of the enzyme. CYP52X1 displayed the highest activity against midrange fatty acids (C12:0 and C14:0) and epoxy stearic acid, 4-8-fold lower activity against C16:0, C18:1, and C18:2, and little to no activity against C9:0 and C18:0. Analyses of the products of the C12:0 and C18:1 reactions confirmed NADPH-dependent regioselective addition of a terminal hydroxyl to the substrates (ω-hydroxylase). These data implicate CYP52X1 as contributing to the penetration of the host cuticle via facilitating the assimilation of insect epicuticle lipids.


Subject(s)
Beauveria/enzymology , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/metabolism , Grasshoppers/microbiology , Mixed Function Oxygenases/metabolism , Animals , Beauveria/genetics , Beauveria/pathogenicity , Cytochrome P-450 Enzyme System/genetics , Mixed Function Oxygenases/genetics , Mutagenesis , Phylogeny , Substrate Specificity/physiology , Virulence
12.
J Biol Chem ; 287(9): 6296-306, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22215670

ABSTRACT

The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cyclopentanes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Isoleucine/analogs & derivatives , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Genotype , Isoleucine/metabolism , Metabolism/physiology , Nucleotidyltransferases/metabolism , Oxidation-Reduction , Plant Leaves/enzymology , Signal Transduction/physiology
14.
FEBS J ; 278(2): 195-205, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21156024

ABSTRACT

In plants, fatty acids (FA) are subjected to various types of oxygenation reactions. Products include hydroxyacids, as well as hydroperoxides, epoxides, aldehydes, ketones and α,ω-diacids. Many of these reactions are catalysed by cytochrome P450s (P450s), which represent one of the largest superfamilies of proteins in plants. The existence of P450-type metabolizing FA enzymes in plants was established approximately four decades ago in studies on the biosynthesis of lipid polyesters. Biochemical investigations have highlighted two major characteristics of P450s acting on FAs: (a) they can be inhibited by FA analogues carrying an acetylenic function, and (b) they can be enhanced by biotic and abiotic stress at the transcriptional level. Based on these properties, P450s capable of producing oxidized FA have been identified and characterized from various plant species. Until recently, the vast majority of characterized P450s acting on FAs belonged to the CYP86 and CYP94 families. In the past five years, rapid progress in the characterization of mutants in the model plant Arabidopsis thaliana has allowed the identification of such enzymes in many other P450 families (i.e. CYP703, CYP704, CYP709, CYP77, CYP74). The presence in a single species of distinct enzymes characterized by their own regulation and catalytic properties raised the question of their physiological meaning. Functional studies in A. thaliana have demonstrated the involvement of FA hydroxylases in the synthesis of the protective biopolymers cutin, suberin and sporopollenin. In addition, several lines of evidence discussed in this minireview are consistent with P450s metabolizing FAs in many aspects of plant biology, such as defence against pathogens and herbivores, development, catabolism or reproduction.


Subject(s)
Cytochrome P-450 Enzyme System/physiology , Fatty Acids/metabolism , Plants/enzymology , Cytochrome P-450 Enzyme System/chemistry
15.
Plant Cell ; 22(1): 173-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20086189

ABSTRACT

The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, aborted pollen grains without detectable exine, and undeveloped anther cuticle. In addition, chemical composition analysis indicated that cutin monomers were hardly detectable in the cyp704B2 anthers. These defects are caused by a mutation in a cytochrome P450 family gene, CYP704B2. The CYP704B2 transcript is specifically detected in the tapetum and the microspore from stage 8 of anther development to stage 10. Heterologous expression of CYP704B2 in yeast demonstrated that CYP704B2 catalyzes the production of omega -hydroxylated fatty acids with 16 and 18 carbon chains. Our results provide insights into the biosynthesis of the two biopolymers sporopollenin and cutin. Specifically, our study indicates that the omega -hydroxylation pathway of fatty acids relying on this ancient CYP704B family, conserved from moss to angiosperms, is essential for the formation of both cuticle and exine during plant male reproductive and spore development.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/metabolism , Membrane Lipids/biosynthesis , Oryza/enzymology , Plant Proteins/metabolism , Pollen/growth & development , Amino Acid Sequence , Biopolymers/biosynthesis , Carotenoids/biosynthesis , Cloning, Molecular , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Plant , Genetic Complementation Test , Hydroxylation , Molecular Sequence Data , Mutation , Oryza/genetics , Oryza/growth & development , Phylogeny , Plant Proteins/genetics , RNA, Plant/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Proc Natl Acad Sci U S A ; 106(51): 22008-13, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19959665

ABSTRACT

Distinctive nanoridges on the surface of flowers have puzzled plant biologists ever since their discovery over 75 years ago. Although postulated to help attract insect pollinators, the function, chemical nature, and ontogeny of these surface nanostructures remain uncertain. Studies have been hampered by the fact that no ridgeless mutants have been identified. Here, we describe two mutants lacking nanoridges and define the biosynthetic pathway for 10,16-dihydroxypalmitate, a major cutin monomer in nature. Using gene expression profiling, two candidates for the formation of floral cutin were identified in the model plant Arabidopsis thaliana: the glycerol-3-phosphate acyltransferase 6 (GPAT6) and a member of a cytochrome P450 family with unknown biological function (CYP77A6). Plants carrying null mutations in either gene produced petals with no nanoridges and no cuticle could be observed by either scanning or transmission electron microscopy. A strong reduction in cutin content was found in flowers of both mutants. In planta overexpression suggested GPAT6 preferentially uses palmitate derivatives in cutin synthesis. Comparison of cutin monomer profiles in knockouts for CYP77A6 and the fatty acid omega-hydroxylase CYP86A4 provided genetic evidence that CYP77A6 is an in-chain hydroxylase acting subsequently to CYP86A4 in the synthesis of 10,16-dihydroxypalmitate. Biochemical activity of CYP77A6 was demonstrated by production of dihydroxypalmitates from 16-hydroxypalmitate, using CYP77A6-expressing yeast microsomes. These results define the biosynthetic pathway for an abundant and widespread monomer of the cutin polyester, show that the morphology of floral surfaces depends on the synthesis of cutin, and identify target genes to investigate the function of nanoridges in flower biology.


Subject(s)
Arabidopsis/metabolism , Flowers , Membrane Lipids/biosynthesis , Nanotechnology , Polyesters/metabolism , Acetyltransferases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation
17.
Plant Physiol ; 151(2): 574-89, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19700560

ABSTRACT

Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes omega-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Biopolymers/biosynthesis , Carotenoids/biosynthesis , Cytochrome P-450 CYP4A/metabolism , Fatty Acids/metabolism , Pollen/enzymology , Alleles , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Biocatalysis , Chromosome Mapping , Cytochrome P-450 CYP4A/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Complementation Test , Hydroxylation , Mutation/genetics , Organ Specificity , Phenols/metabolism , Phenotype , Pollen/cytology , Pollen/genetics , Pollen/ultrastructure
18.
Plant Physiol ; 150(4): 1831-43, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19525321

ABSTRACT

Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid omega-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven beta-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and alpha,omega-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cytochrome P-450 Enzyme System/metabolism , Dicarboxylic Acids/metabolism , Fatty Acids/metabolism , Lipids/biosynthesis , Plant Roots/enzymology , Seeds/enzymology , Arabidopsis/cytology , Glucuronidase/metabolism , Lipids/chemistry , Mutation/genetics , Phylogeny , Plant Roots/cytology , Polyesters/chemistry , Polyesters/metabolism , Protein Transport , Recombinant Fusion Proteins/metabolism , Seeds/cytology , Sequence Analysis, DNA , Subcellular Fractions/enzymology
19.
FEBS J ; 276(3): 719-35, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19120447

ABSTRACT

An approach based on an in silico analysis predicted that CYP77A4, a cytochrome P450 that so far has no identified function, might be a fatty acid-metabolizing enzyme. CYP77A4 was heterologously expressed in a Saccharomyces cerevisiae strain (WAT11) engineered for cytochrome P450 expression. Lauric acid (C(12:0)) was converted into a mixture of hydroxylauric acids when incubated with microsomes from yeast expressing CYP77A4. A variety of physiological C(18) fatty acids were tested as potential substrates. Oleic acid (cis-Delta(9)C(18:1)) was converted into a mixture of omega-4- to omega-7-hydroxyoleic acids (75%) and 9,10-epoxystearic acid (25%). Linoleic acid (cis,cis-Delta(9),Delta(12)C(18:2)) was exclusively converted into 12,13-epoxyoctadeca-9-enoic acid, which was then converted into diepoxide after epoxidation of the Delta(9) unsaturation. Chiral analysis showed that 9,10-epoxystearic acid was a mixture of 9S/10R and 9R/10S in the ratio 33 : 77, whereas 12,13-epoxyoctadeca-9-enoic acid presented a strong enantiomeric excess in favor of 12S/13R, which represented 90% of the epoxide. Neither stearic acid (C(18:0)) nor linolelaidic acid (trans,trans-Delta(9),Delta(12)C(18:2)) was metabolized, showing that CYP77A4 requires a double bond, in the cis configuration, to metabolize C(18) fatty acids. CYP77A4 was also able to catalyze the in vitro formation of the three mono-epoxides of alpha-linolenic acid (cis,cis,cis-Delta(9),Delta(12),Delta(15)C(18:3)), previously described as antifungal compounds. Epoxides generated by CYP77A4 are further metabolized to the corresponding diols by epoxide hydrolases located in microsomal and cytosolic subcellular fractions from Arabidopsis thaliana. The concerted action of CYP77A4 with epoxide hydrolases and hydroxylases allows the production of compounds involved in plant-pathogen interactions, suggesting a possible role for CYP77A4 in plant defense.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/metabolism , Epoxy Compounds/metabolism , Fatty Acids/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatography, High Pressure Liquid , Cloning, Molecular , Cytochrome P-450 Enzyme System/genetics , Cytosol/metabolism , Fatty Acids/chemistry , Gene Expression , Hydrolysis , Microsomes/metabolism , Molecular Structure
20.
Plant Physiol ; 149(2): 1050-60, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19109416

ABSTRACT

Suberin is a cell wall lipid polyester found in the cork cells of the periderm offering protection against dehydration and pathogens. Its biosynthesis and assembly, as well as its contribution to the sealing properties of the periderm, are still poorly understood. Here, we report on the isolation of the coding sequence CYP86A33 and the molecular and physiological function of this gene in potato (Solanum tuberosum) tuber periderm. CYP86A33 was down-regulated in potato plants by RNA interference-mediated silencing. Periderm from CYP86A33-silenced plants revealed a 60% decrease in its aliphatic suberin load and greatly reduced levels of C18:1 omega-hydroxyacid (approximately 70%) and alpha,omega-diacid (approximately 90%) monomers in comparison with wild type. Moreover, the glycerol esterified to suberin was reduced by 60% in the silenced plants. The typical regular ultrastructure of suberin, consisting of dark and light lamellae, disappeared and the thickness of the suberin layer was clearly reduced. In addition, the water permeability of the periderm isolated from CYP86A33-silenced lines was 3.5 times higher than that of the wild type. Thus, our data provide convincing evidence for the involvement of omega-functional fatty acids in establishing suberin structure and function.


Subject(s)
Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Silencing , Lipids/chemistry , Solanum tuberosum/genetics , Water/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Molecular Sequence Data , Oryza/enzymology , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Plant Tubers/enzymology , Plant Tubers/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Solanum tuberosum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...