Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 75(2): 249-260, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35429170

ABSTRACT

This study evaluated the effects of a fibre and phenolic-rich flour (IGF) prepared from Isabel grape by-products on the growth and metabolism of different probiotics and distinct bacterial populations part of the human intestinal microbiota during an in vitro colonic fermentation. IGF was submitted to simulated gastrointestinal digestion before use in the experiments. IGF favoured the growth of the probiotics Lactobacillus acidophilus La-05, L. casei L-26 and Bifidobacterium lactis Bb-12, with viable counts of >7 log CFU per ml, as well as caused decreases in pH values and increases in organic acid production in the growth medium during 48 h of cultivation. IGF increased the population of beneficial micro-organisms forming the human intestinal microbiota, particularly Lactobacillus spp., decreased the pH values, and increased the lactic acid and short-chain fatty acid (acetic, butyric and propionic acids) production during 24 h of in vitro colonic fermentation. These results indicate the potential prebiotic effects of IGF, which should represent a novel sustainable added-value ingredient with functional properties and gut-health benefits.


Subject(s)
Microbiota , Probiotics , Vitis , Fermentation , Flour , Humans , Lactobacillus acidophilus/metabolism , Phenols/analysis , Phenols/pharmacology , Probiotics/metabolism , Probiotics/pharmacology
2.
Mater Sci Eng C Mater Biol Appl ; 51: 309-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842140

ABSTRACT

Single phase hydroxyapatite (HAp) and biphasic material hydroxyapatite/ß-tricalcium phosphate (HAp/ß-TCP) were obtained from a marine source (Atlantic cod fish bones). Here we report a study on the biological properties of these materials, including cytotoxicity, bioactivity and haemocompatibility. Results showed that the materials are not cytotoxic, neither in their powder nor in pellet form; indeed growth of Saos-2 cells was comparable to that of commercial. The haemolysis rate was lower than 2%; hence the materials can be classified as non-haemolytic. Moreover, when immersed in Simulated Body Fluid (SBF), crystal formation was observed on the surface of both materials. The sintering behaviour of the samples was also studied; both powders showed very high sinterability (density higher than 95% of the theoretical value). Overall, these results confirm the suitability of these materials for biomedical applications.


Subject(s)
Biological Products/chemical synthesis , Bone Substitutes/chemistry , Bone and Bones/chemistry , Gadiformes/metabolism , Hydroxyapatites/chemistry , Animals , Biological Products/toxicity , Body Fluids/chemistry , Bone Substitutes/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Elastic Modulus , Hardness , Hot Temperature , Humans , Hydroxyapatites/toxicity , Materials Testing
3.
J Mater Chem B ; 2(36): 5999-6009, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-32261852

ABSTRACT

The use of sunscreens as protective barriers against skin damage and cancer, by absorbing harmful UVA and UVB rays, is becoming an increasingly important issue. Such products are usually based on TiO2 or ZnO, although both Fe2O3 and hydroxyapatite (Ca10(PO4)6(OH)2, HAp) doped with metal ions have been reported as being ultraviolet (UV) absorbing materials. HAp is the main component of bone; it is, therefore, highly biocompatible. In the present work, an iron-doped HAp-based material, containing both Fe ions substituted into the HAp structure and iron oxide in hematite (α-Fe2O3) form, was successfully developed from waste cod fish bones. This was achieved through a simple process of treating the bones in a Fe(ii) containing solution, followed by heating at 700 °C. The material showed good absorption in the whole UV range and did not form radicals when irradiated. The sunscreen cream formulated with this material could be used as a broad sunscreen protector (λcrit > 370 nm), showing high absorption both in the UVA and UVB ranges. Because of its absorption properties it would be classified as 5 star protection according to the Boots UVA star rating system. The cream is also photostable, and does not cause irritation or erythema formation when in contact with the human skin. These results show that a food by-product such as fish bones could be converted into a valuable product, with potential applications in health care and cosmetics. This is the first time a HAp-based sunscreen cream has been developed and validated as a proof of concept.

4.
Mater Sci Eng C Mater Biol Appl ; 33(1): 103-10, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25428050

ABSTRACT

Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 °C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca10(PO4)6(OH)2 and ß-Ca(PO4)3) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca10(PO4)6Cl2) and fluorapatite (Ca10(PO4)6F2) were obtained using CaCl2 and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process.


Subject(s)
Apatites/pharmacology , Biocompatible Materials/pharmacology , Bone and Bones/chemistry , Calcium Phosphates/pharmacology , Animals , Calcium/chemistry , Fishes , Humans , Molecular Weight , Sodium Fluoride/chemistry , Solutions , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...