Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Meat Sci ; 216: 109572, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38970932

ABSTRACT

Growing health and environmental concerns have increased demand for all-natural products, with a focus on clean labelling. Sodium nitrite is the most widely used additive in the meat industry because it imparts the typical cured flavour and colour to meat products and, most importantly, their microbiological safety. However, due to health concerns, the European Commission is proposing revised regulations to reduce nitrate and nitrite levels in meat products. As a result, the meat industry is actively seeking alternatives. This study explored the production of four cooked hams utilising nitrate-rich vegetable sources combined with two different nitrate-reducing commercial food cultures, alongside a control ham prepared with sodium nitrite (150 ppm). Microbiological, physico-chemical (pH, water activity, nitrate and nitrite concentration, lipid profile, lipid oxidation) and sensory (texture and colour profile) characterisation of the products was carried out. Challenge tests for Listeria monocytogenes, Clostridium sporogenes and Clostridium perfringens have been performed to assess the growth of pathogens, if present in the products. Results revealed comparable microbiological and physico-chemical profiles across ham formulations, with minor differences observed in colour parameters for sample C. The sensory analysis showed that for the pilot ham formulations A and D, there were no significant differences in consumer perception compared to the control ham. In the challenge tests, L. monocytogenes levels were similar in both control and tested hams. There were no significant differences in C. sporogenes and C. perfringens counts at any temperature or between test and control samples. These results indicate that this technology has a potential future in the cured meat sector, as regulators mandate the reduction of added synthetic chemicals and consumers seek healthier and more natural ingredients in their daily diets.

2.
Heliyon ; 10(11): e31721, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867964

ABSTRACT

This study aimed to explore more efficient ways of administering caffeine to the body by investigating the impact of caffeine on the modulation of the nervous system's activity through the analysis of electrocardiographic signals (ECG). An ECG non-linear multi-band analysis using Discrete Wavelet Transform (DWT) was employed to extract various features from healthy individuals exposed to different caffeine consumption methods: expresso coffee (EC), decaffeinated coffee (ED), Caffeine Oral Films (OF_caffeine), and placebo OF (OF_placebo). Non-linear feature distributions representing every ECG minute time series have been selected by PCA with different variance percentages to serve as inputs for 23 machine learning models in a leave-one-out cross-validation process for analyzing the behavior differences between ED/EC and OF_placebo/OF_caffeine groups, respectively, over time. The study generated 50-point accuracy curves per model, representing the discrimination power between groups throughout the 50 min. The best model accuracies for ED/EC varied between 30 and 70 %, (using the decision tree classifier) and OF_placebo/OF_caffeine ranged from 62 to 84 % (using Fine Gaussian). Notably, caffeine delivery through OFs demonstrated effective capacity compared to its placebo counterpart, as evidenced by significant differences in accuracy curves between OF_placebo/OF_caffeine. Caffeine delivery via OFs also exhibited rapid dissolution efficiency and controlled release rate over time, distinguishing it from EC. The study supports the potential of caffeine delivery through Caffeine OFs as a superior technology compared to traditional methods by means of ECG analysis. It highlights the efficiency of OFs in controlling the release of caffeine and underscores their promise for future caffeine delivery systems.

3.
Foods ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38890828

ABSTRACT

Carotenoids, prominent lipid-soluble phytochemicals in the human diet, are responsible for vibrant colours in nature and play crucial roles in human health. While they are extensively studied for their antioxidant properties and contributions to vitamin A synthesis, their interactions with the intestinal microbiota (IM) remain poorly understood. In this study, beta (ß)-carotene, lutein, lycopene, a mixture of these three pigments, and the alga Osmundea pinnatifida were submitted to simulated gastrointestinal digestion (GID) and evaluated on human faecal samples. The results showed varying effects on IM metabolic dynamics, organic acid production, and microbial composition. Carotenoid exposure influenced glucose metabolism and induced the production of organic acids, notably succinic and acetic acids, compared with the control. Microbial composition analysis revealed shifts in phyla abundance, particularly increased Pseudomonadota. The α-diversity indices demonstrated higher diversity in ß-carotene and the pigments' mixture samples, while the ß-diversity analysis indicated significant dissimilarity between the control and the carotenoid sample groups. UPLC-qTOF MS analysis suggested dynamic changes in carotenoid compounds during simulated fermentation, with lutein exhibiting distinct mass ion fragmentation patterns. This comprehensive research enhances our understanding of carotenoid-IM interactions, shedding light on potential health implications and the need for tailored interventions for optimal outcomes.

4.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731426

ABSTRACT

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Subject(s)
Antioxidants , Olive Oil , Plant Extracts , Polyphenols , Olive Oil/chemistry , Polyphenols/isolation & purification , Polyphenols/chemistry , Polyphenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Green Chemistry Technology/methods , Olea/chemistry , Chromatography, High Pressure Liquid/methods , Solvents/chemistry
5.
Food Funct ; 15(11): 6095-6117, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757812

ABSTRACT

The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.


Subject(s)
Bacteria , Diet, Western , Fatty Acids, Omega-3 , Feces , Fermentation , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Animals , Feces/microbiology , Rats , Male , Diet, Western/adverse effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Fatty Acids, Omega-3/pharmacology , Linolenic Acids/pharmacology , Rats, Wistar , Fish Oils/pharmacology , Pomegranate/chemistry , Plant Oils/pharmacology , Cecum/microbiology , Cecum/metabolism
6.
Meat Sci ; 213: 109519, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663116

ABSTRACT

Lipid oxidation is the principal driver of meat and meat product deterioration during shelf life, causing the loss of fresh meat color, flavor, and aroma. Currently, synthetic antioxidants are used to prevent oxidation, but increasing consumer demand for natural ones leaves the industry with few alternatives. In this study, protocatechuic acid (PCA), known to have high antioxidant activity, was evaluated as a potential inhibitor of meat lipid oxidation. For this purpose, the antioxidant capacity and lipoxygenase (LOX) inhibitory activity of PCA were evaluated in vitro, and a set of four experiments was conducted, treating minced meat with water (control), lactic acid (LA), rosmarinic acid (RA) and PCA, at different concentrations (1-12 mg mL-1), depending on the experiment. The potential antioxidant effect of PCA when applied to meat cubes was also evaluated, as well as the potential of carboxymethyl cellulose (CMC) as a delivery system for PCA. The in vitro results showed that PCA is a potent antioxidant and an effective LOX inhibitor at 1 mg mL-1. PCA effect on meat lipid oxidation prevention was dose-dependent, and at 2 mg mL-1, it inhibited color change by 50% and lipid peroxidation by up to 70% when compared to water-treated samples, performing better than RA at 0.25 mg mL-1. These results suggest that PCA is a promising molecule to the meat industry as a natural preservative for meat and meat products directly or in a formulation.


Subject(s)
Antioxidants , Hydroxybenzoates , Lipid Peroxidation , Hydroxybenzoates/pharmacology , Animals , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Swine , Lipoxygenase Inhibitors/pharmacology , Color , Meat Products/analysis , Red Meat/analysis , Oxidation-Reduction
7.
Methods Mol Biol ; 2798: 153-159, 2024.
Article in English | MEDLINE | ID: mdl-38587741

ABSTRACT

Mass spectrometry is a high throughput technique widely used for metabolic fingerprinting of plant material. Among the diverse plant metabolites, pigments such as anthocyanins play a determinant role in plant defence mechanisms, protecting them from biotic and abiotic stresses. Anthocyanins are phenolic water-soluble glycosides or acyl-glycosides of anthocyanidins which could be accurately detected and quantified through mass spectrometry. This chapter describes how to extract anthocyanins from higher plant materials and quantify them through a liquid chromatography-mass spectrometry (LC-MS) based method.


Subject(s)
Anthocyanins , Tandem Mass Spectrometry , Glycosides , Liquid Chromatography-Mass Spectrometry , Phenols
8.
Foods ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540925

ABSTRACT

Fish byproducts are valuable sources of Ω-3 polyunsaturated fatty acids (PUFAs). Their valorization potentially alleviates pressure on this sector. This study uses a circular economy approach to investigate the oil fraction from sardine cooking wastewater (SCW). Analysis of its fatty acid (FA) profile revealed promising PUFA levels. However, PUFAs are highly susceptible to oxidation, prompting the exploration of effective and natural strategies to replace synthetic antioxidants and mitigate their associated risks and concerns. An antioxidant extract from acorn shells was developed and evaluated for its efficacy in preventing oxidative degradation. The extract exhibited significant levels of total phenolic compounds (TPC: 49.94 and 22.99 mg TAE or GAE/g DW) and antioxidant activities (ABTS: 72.46; ORAC: 59.60; DPPH: 248.24 mg TE/g DW), with tannins comprising a significant portion of phenolics (20.61 mg TAE/g DW). LC-ESI-UHR-QqTOF-MS identified ellagic acid, epicatechin, procyanidin B2 and azelaic acid as the predominant phenolic compounds. The extract demonstrated the ability to significantly reduce the peroxide index and inhibit PUFA oxidation, including linoleic acid (LA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA). This approach holds promise for developing stable, functional ingredients rich in PUFAs. Future research will focus on refining oil extraction procedures and conducting stability tests towards the development of specific applications.

9.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494231

ABSTRACT

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Subject(s)
Agaricales , Anti-Infective Agents , Gastrointestinal Microbiome , Animals , Humans , Prebiotics , Polysaccharides/pharmacology , Polysaccharides/chemistry , Chitin/pharmacology , Glucans/pharmacology , Anti-Infective Agents/pharmacology
10.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542189

ABSTRACT

The encapsulation of retinol within silica microparticles has emerged as a promising opportunity in the realm of cosmetic and pharmaceutical formulations, driven by the need to reinforce the photoprotection and oxidation stability of retinol. This work examines the process of encapsulating retinol into silica microparticles. The association efficiency, microparticle size, molecular structure, morphology, oxidation, and release profile, as well as biocompatibility and skin sensitization, were evaluated. Results showed that 0.03% of retinol and 9% of emulsifier leads to an association efficiency higher than 99% and a particle size with an average of 5.2 µm. FTIR results indicate that there is an association of retinol with the silica microparticles, and some may be on the surface. Microscopy indicates that when association happens, there is less aggregation of the particles. Oxidation occurs in two different phases, the first related to the retinol on the surface and the second to the associated retinol. In addition, a burst release of up to 3 h (30% free retinol, 17% associated retinol) was observed, as well as a sustained release of 44% of retinol up to 24 h. Encapsulation allowed an increase in the minimal skin cytotoxic concentrations of retinol from 0.04 µg/mL to 1.25 mg/mL without skin sensitization. Overall, retinol is protected when associated with silica microparticles, being safe to use in cosmetics and dermatology.


Subject(s)
Retinoids , Saccharum , Delayed-Action Preparations , Vitamin A , Silicon Dioxide/chemistry , Particle Size
11.
Int J Biol Macromol ; 265(Pt 2): 130933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508554

ABSTRACT

Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.


Subject(s)
Glucans , Saccharomyces cerevisiae , Glucans/chemistry , Saccharomyces cerevisiae/chemistry , Polysaccharides/chemistry , Water
12.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398840

ABSTRACT

Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.


Subject(s)
Blueberry Plants , Diabetes Mellitus, Type 2 , Fatty Liver , Prediabetic State , Rats , Male , Animals , Mice , Prediabetic State/metabolism , Diabetes Mellitus, Type 2/complications , Rats, Wistar , Liver/metabolism , Fatty Liver/metabolism , Obesity/metabolism , Dietary Supplements , Glucose/metabolism , Diet, High-Fat/adverse effects , Lipids/pharmacology , Autophagy , Mice, Inbred C57BL
13.
Biotechnol J ; 19(2): e2300465, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403437

ABSTRACT

This work aimed to study for the first time the effects of phenolic compounds from sugarcane syrup on Saccharomyces cerevisiae ß-farnesene fermentation by removing them from this feedstock. Syrup purification was optimized through a central composite design using five types of activated charcoal: three contact times (1-24 h) and three adsorbent concentrations (10-150 g L-1 ). The optimal purification condition-charcoal pellets at 115 g L-1 and contact time of 12.5 h-led to 96.7% of phenolic compounds removal and 43.7% of syrup recovery. The effects of reducing phenolic content from approximately 7.0-0.3 mg L-1 in sugarcane syrup on yeast fermentation varied with the scale. An increase in biomolecule productivity was only observed in shake-flasks (11%) and in biomass productivity only in the 2 L bioreactor (12%). Thus, phenolic compounds from sugarcane syrup do not influence ß-farnesene production at a large scale under the conditions tested.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Sesquiterpenes , Fermentation , Ethanol , Phenols
14.
Biomolecules ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397470

ABSTRACT

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Subject(s)
Saccharum , Humans , Saccharum/metabolism , Caco-2 Cells , Antihypertensive Agents/pharmacology , alpha-Glucosidases/metabolism , Spectroscopy, Fourier Transform Infrared , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Sugars , Lipids , Plant Extracts/pharmacology , Plant Extracts/chemistry
15.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339165

ABSTRACT

The pursuit for better skin health, driven by collective and individual perceptions, has led to the demand for sustainable skincare products. Environmental factors and lifestyle choices can accelerate skin aging, causing issues like inflammation, wrinkles, elasticity loss, hyperpigmentation, and dryness. The skincare industry is innovating to meet consumers' requests for cleaner and natural options. Simultaneously, environmental issues concerning waste generation have been leading to sustainable strategies based on the circular economy. A noteworthy solution consists of citrus by-product valorization, as such by-products can be used as a source of bioactive molecules. Citrus processing, particularly, generates substantial waste amounts (around 50% of the whole fruit), causing unprecedented environmental burdens. Hesperidin, a flavonoid abundant in orange peels, is considered to hold immense potential for clean skin health product applications due to its antioxidant, anti-inflammatory, and anticarcinogenic properties. This review explores hesperidin extraction and purification methodologies as well as key skincare application areas: (i) antiaging and skin barrier enhancement, (ii) UV radiation-induced damage, (iii) hyperpigmentation and depigmentation conditions, (iv) wound healing, and (v) skin cancer and other cutaneous diseases. This work's novelty lies in the comprehensive coverage of hesperidin's promising skincare applications while also demonstrating its potential as a sustainable ingredient from a circular economy approach.


Subject(s)
Citrus sinensis , Citrus , Hesperidin , Hyperpigmentation , Humans , Hesperidin/pharmacology , Flavonoids , Antioxidants
16.
Int J Biol Macromol ; 260(Pt 2): 129328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242403

ABSTRACT

Pulsed electric field (PEF) technology was used to extract starch from Q. robur flours using low-intensity electric fields (0 and 0.1 kV/cm) and study the impact of PEF on the structure and properties of acorn starch concerning commercial starch. PEF technology is an advantageous method for starch extraction than the aqueous steeping from an industrial perspective since reduces extraction time and allows for continuous processing of larger suspension volumes. PEF technology preserved the amylose and amylopectin contents, hydrogen bonds, and diffraction patterns, as well as the starch native properties. Hence, PEF could be used to obtain native starches, but future studies should verify its economic viability. Acorn starches have lower damaged starch content, gelatinization temperatures, enthalpies, improved pseudoplastic behavior, reduced in-vitro digestibility, and lower resistance to deformation compared to commercial corn starch. The higher solubility and swelling power of acorn starches up to 80 °C make them a suitable food additive in fermented yogurt and milk products and thus help to value acorn and acorn starches. Hence, acorns can be used to obtain native starches, a food ingredient with a wide range of food and non-food usage, using PEF.


Subject(s)
Quercus , Starch , Starch/chemistry , Quercus/chemistry , Amylopectin/chemistry , Amylose/chemistry , Temperature
17.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194142

ABSTRACT

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Female , Humans , Mannans , HeLa Cells , Quality of Life , Candidiasis, Vulvovaginal/prevention & control , Lactobacillus
18.
Foods ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275685

ABSTRACT

The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.

19.
Food Chem ; 442: 138368, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219565

ABSTRACT

Mango peels are widely produced and highly perishable. Disinfectant washing and freezing are among the most used methods to preserve foods. However, their impact on products' properties is conditioned by the foods' features. This study evaluated for the first time the phytochemical composition, antioxidant activity, and microstructure of mango peels washed with peracetic acid (27 mg/mL for 19 min) and frozen at -20 °C for 30 days. Washing decreased the content of vitamin C (-7%), penta-O-galloyl-ß-d-glucose (-23 %), catechin (-30 %), and lutein (-24 %), but the antioxidant activity was preserved. Freezing changed mango peels' microstructure, increased free phenolic compounds, namely acid gallic (+36 %) and catechin (+51 %), but reduced bound phenolic compounds (-12 % to -87 %), bound phenolic compounds' antioxidant activity (-51 % to -72 %), and violaxanthin (-51 %). Both methods were considered adequate to conserve mango peels since fiber and the main bioactive compounds (free mangiferin, free gallic acid, and ß-carotene) remained unchanged or increased.


Subject(s)
Catechin , Glucose , Mangifera , Antioxidants/chemistry , Mangifera/chemistry , Catechin/analysis , Freezing , Fruit/chemistry
20.
Compr Rev Food Sci Food Saf ; 23(1): e13247, 2024 01.
Article in English | MEDLINE | ID: mdl-38284589

ABSTRACT

Low consumer acceptance of edible insects and insect-based products is one of the main barriers to the successful implementation of entomophagy in Western countries. This rejection is mainly caused by consumers' negative emotional responses, psychological/personality traits, and attitudes toward food choices. However, as the role of intrinsic product characteristics on such food choices has not been adequately studied, a systematic review was conducted following the PRISMA method, to analyze studies that have assessed hedonic evaluations, sensory profiling, or emotional responses to edible insects or insect-based products. The majority of studies performed with whole insects and insect flour highlight that insect-based products are more negatively evaluated than control products. Although the sensory properties of insects are affected by species and processing conditions, they are generally negative across sensory dimensions. In particular, insects and insect-based products are generally associated with odor and flavor/taste attributes that are related to old/spoiled food. These negative attributes can be linked to the fat fraction of edible insects, with insect oils being very negatively evaluated by consumers. On the other hand, defatted fractions and deodorized oils are not associated with these negative attributes, further supporting the hypothesis that the fat fraction is responsible for the negative odor and flavor/taste attributes. However, there is still a lack of studies assessing the sensory profile of edible insects and insect-based products, as well as consumers' emotional responses to their consumption. Future studies should focus on the effects of different processing conditions, products incorporating insect fractions (namely protein concentrates/isolates and defatted fractions), and evaluation by target consumer groups.


Subject(s)
Edible Insects , Animals , Emotions , Flour , Insecta , Oils , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...