Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1120419, 2023.
Article in English | MEDLINE | ID: mdl-36969854

ABSTRACT

Introduction: N-2-methoxy-benzylated ("NBOMe") analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b']difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine). Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.). Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug's effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes. Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.

2.
Addict Biol ; 27(5): e13216, 2022 09.
Article in English | MEDLINE | ID: mdl-36001433

ABSTRACT

N-(2-methoxybenzyl)phenethylamines (NBOMes) are a family of potent 5-HT2A agonists containing substances emerging on the illicit drug market as a replacement for N,N-diethyllysergamide (LSD). Despite the increasing use of NBOMes for diagnostic, research and recreational purposes, only a limited number of studies have focussed on their in vivo effect. Here, we investigated pharmacokinetics, systemic toxicity, thermoregulation in individually and group-housed animals, and acute behavioural effects after subcutaneous administration of 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe; 0.2, 1, and 5 mg/kg) in Wistar rats. Drug concentration peaked 1 h after the administration of 5 mg/kg in both blood serum and brain tissue with a half-life of 1.88 and 2.28 h, respectively. According to Organisation for Economic Co-operation and Development 423 toxicity assay, the drug is classified into category 3 with a lethal dose of 300 mg/kg and an estimated LD50 value of 200 mg/kg. Histological examination of organs collected from rats injected with the lethal dose revealed subtle pathological changes, highly suggestive of acute cardiovascular arrest due to malignant arrhythmia. Altered thermoregulation after 5 mg/kg was demonstrated by reduced body temperature in individually housed rats (p < 0.01). Behavioural effects assessed by the Open Field test and Prepulse Inhibition of Startle Response revealed that the two lower doses (0.2 and 1 mg/kg) caused a reduction in locomotor activity (p < 0.01), increased anxiety (p < 0.05) and 5 mg/kg additionally impaired sensorimotor gating (p < 0.001). In summary, 25CN-NBOMe readily passes the blood-brain barrier and exhibits a moderate level of toxicity and behavioural effect comparable with other NBOMes.


Subject(s)
Hallucinogens , Animals , Body Temperature Regulation , Dose-Response Relationship, Drug , Hallucinogens/pharmacology , Phenethylamines , Rats , Rats, Wistar
3.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Article in English | MEDLINE | ID: mdl-34519023

ABSTRACT

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Subject(s)
Behavior, Animal , Illicit Drugs , Ketamine , Locomotion , Animals , Behavior, Animal/drug effects , Illicit Drugs/adverse effects , Illicit Drugs/pharmacokinetics , Illicit Drugs/pharmacology , Ketamine/administration & dosage , Ketamine/adverse effects , Ketamine/analogs & derivatives , Ketamine/pharmacokinetics , Ketamine/pharmacology , Locomotion/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Behav Brain Res ; 421: 113713, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34906607

ABSTRACT

Naphyrone, also known as NRG-1, is a novel psychoactive substance (NPS), a cathinone with stimulatory properties available on the grey/illicit drug market for almost a decade. It is structurally related to infamously known powerful stimulants with the pyrovalerone structure, such as alpha-pyrrolidinovalerophenone (α-PVP) or methylenedioxypyrovalerone (MDPV) that are labeled as a cheap replacement for cocaine and other stimulants. Despite the known addictive potential of α-PVP and MDPV, there are no studies directly evaluating naphyrone's addictive potential e.g., in conditioned place preference (CPP) test or using self-administration. Therefore, our study was designed to evaluate the addictive potential in a CPP test in male Wistar rats and compare its effect to another powerful stimulant with a high addictive potential - methamphetamine. Naphyrone increased time spent in the drug-paired compartment with 5 and 20 mg/kg s.c. being significant and 10 mg/kg s.c. reaching the threshold (p = 0.07); the effect was comparable to that of methamphetamine 1.5 mg/kg s.c. The lowest dose, naphyrone 1 mg/kg s.c., had no effect on CPP. Interestingly, no dose response effect was detected. Based on these data, we are able to conclude that naphyrone has an addictive potential and may possess a significant risk to users.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Conditioning, Classical/drug effects , Methamphetamine/pharmacology , Pentanones/pharmacology , Pyrrolidines/pharmacology , Substance-Related Disorders , Alkaloids/pharmacology , Animals , Central Nervous System Stimulants/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Methamphetamine/administration & dosage , Pentanones/administration & dosage , Pyrrolidines/administration & dosage , Rats , Rats, Wistar
5.
Addict Biol ; 26(2): e12906, 2021 03.
Article in English | MEDLINE | ID: mdl-32378298

ABSTRACT

Naphthylpyrovalerone (naphyrone) is a pyrovalerone cathinone that potently inhibits monoamine transporters and provides stimulatory-entactogenic effects. Little is known about the safety of naphyrone or its effects in vivo, and more research is needed to acquire knowledge about its fundamental effects on physiology and behaviour. Our objective was to investigate naphyrone's pharmacokinetics, acute toxicity, hyperthermic potential and stimulatory and psychotomimetic properties in vivo in male Wistar rats. Pharmacokinetics after 1 mg/kg subcutaneous (sc.) naphyrone were measured over 6 h in serum, the brain, liver and lungs. Rectal temperature (degree Celsius) was measured over 10 h in group-versus individually housed rats after 20 mg/kg sc. In the behavioural experiments, 5, 10 or 20 mg/kg of naphyrone was administered 15 or 60 min prior to testing. Stimulation was assessed in the open field, and sensorimotor processing in a prepulse inhibition (PPI) task. Peak concentrations of naphyrone in serum and tissue were reached at 30 min, with a long-lasting elevation in the brain/serum ratio, consistent with observations of lasting hyperlocomotion in the open field and modest increases in body temperature. Administration of 20 mg/kg transiently enhanced PPI. Naphyrone crosses the blood-brain barrier rapidly and is eliminated slowly, and its long-lasting effects correspond to its pharmacokinetics. No specific signs of acute toxicity were observed; therefore, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.


Subject(s)
Body Temperature Regulation/drug effects , Central Nervous System Stimulants/pharmacokinetics , Illicit Drugs/pharmacokinetics , Pentanones/pharmacokinetics , Pyrrolidines/pharmacokinetics , Animals , Body Temperature/drug effects , Central Nervous System Stimulants/pharmacology , Illicit Drugs/pharmacology , Male , Pentanones/pharmacology , Pyrrolidines/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...