Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
2.
Physiol Genomics ; 56(7): 469-482, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38525531

ABSTRACT

Single-cell technologies such as flow cytometry and single-cell RNA sequencing have allowed for comprehensive characterization of the kidney cellulome. However, there is a disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterizing kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: a scRNAseq protocol (P1), a multi-tissue digestion kit from Miltenyi Biotec (P2), and a protocol established in our laboratory (P3). Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal, and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B intercalating cells compared with the other techniques. P1 and P3 produced similar yields for most cell types; however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich specific kidney cell types may benefit from this comparative analysis.NEW & NOTEWORTHY This study is the first to evaluate published single-cell suspension preparation protocols and their ability to produce high-quality cellular yields from the mouse kidney. Three single-cell digestion protocols were compared and each produced significant differences in kidney cellular heterogeneity. These findings highlight the importance of the digestion protocol when using single-cell technologies. This study may help future single-cell science research by guiding researchers to choose protocols that enrich certain cell types of interest.


Subject(s)
Kidney , Mice, Inbred C57BL , Single-Cell Analysis , Animals , Single-Cell Analysis/methods , Female , Male , Mice , Kidney/metabolism , Kidney/cytology , Flow Cytometry/methods , Endothelial Cells/metabolism , Endothelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/cytology
3.
Hypertension ; 81(4): 738-751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38318714

ABSTRACT

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Subject(s)
Aortic Diseases , Atherosclerosis , Humans , RNA , Aorta/metabolism , Aortic Diseases/genetics , Gene Expression Profiling , Atherosclerosis/genetics , Atherosclerosis/metabolism
4.
iScience ; 26(10): 107759, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736052

ABSTRACT

Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.

5.
Basic Res Cardiol ; 118(1): 11, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988733

ABSTRACT

Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.


Subject(s)
Cardiomyopathies , Heart Failure , Male , Female , Mice , Animals , Mice, Obese , Heart Failure/complications , Multiomics , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Stroke Volume , Mineralocorticoid Receptor Antagonists/pharmacology , Obesity/metabolism
8.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34647038

ABSTRACT

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Subject(s)
Cell Separation/methods , Myocardium/cytology , Myocytes, Cardiac , Single-Cell Analysis/methods , Animals , Cell Culture Techniques , Cells, Cultured , Genomics , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/classification , Myocytes, Cardiac/cytology
10.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34074290

ABSTRACT

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/etiology , Fibroblasts/pathology , Myocardium/pathology , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diastole , Diet, High-Fat , Fibroblasts/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Male , Mice , Monocytes/metabolism , Monocytes/pathology , Myocardium/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Streptozocin , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
12.
Cardiovasc Res ; 117(10): 2252-2262, 2021 08 29.
Article in English | MEDLINE | ID: mdl-32941598

ABSTRACT

AIMS: Sex differences have been consistently identified in cardiac physiology and incidence of cardiac disease. However, the underlying biological causes for the differences remain unclear. We sought to characterize the cardiac non-myocyte cellular landscape in female and male hearts to determine whether cellular proportion of the heart is sex-dependent and whether endocrine factors modulate the cardiac cell proportions. METHODS AND RESULTS: Utilizing high-dimensional flow cytometry and immunofluorescence imaging, we found significant sex-specific differences in cellular composition of the heart in adult and juvenile mice, that develops postnatally. Removal of systemic gonadal hormones by gonadectomy results in rapid sex-specific changes in cardiac non-myocyte cellular proportions including alteration in resident mesenchymal cell and leucocyte populations, indicating gonadal hormones and their downstream targets regulate cardiac cellular composition. The ectopic reintroduction of oestrogen and testosterone to female and male mice, respectively, reverses many of these gonadectomy-induced compositional changes. CONCLUSION: This work shows that the constituent cell types of the mouse heart are hormone-dependent and that the cardiac cellular landscapes are distinct in females and males, remain plastic, and can be rapidly modulated by endocrine factors. These observations have implications for strategies aiming to therapeutically alter cardiac cellular heterogeneity and underscore the importance of considering biological sex for studies examining cardiac physiology and stress responses.


Subject(s)
Estradiol/metabolism , Myocardium/metabolism , Testosterone/metabolism , Age Factors , Animals , Cell Separation , Estradiol/pharmacology , Estrogen Replacement Therapy , Female , Flow Cytometry , Fluorescent Antibody Technique , Male , Mice, Inbred C57BL , Myocardium/cytology , Orchiectomy , Ovariectomy , RNA-Seq , Sex Characteristics , Single-Cell Analysis , Testosterone/pharmacology , Transcriptome
13.
Biochem Soc Trans ; 48(6): 2483-2493, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33259583

ABSTRACT

Single-cell transcriptomics enables inference of context-dependent phenotypes of individual cells and determination of cellular diversity of complex tissues. Cardiac fibrosis is a leading factor in the development of heart failure and a major cause of morbidity and mortality worldwide with no effective treatment. Single-cell RNA-sequencing (scRNA-seq) offers a promising new platform to identify new cellular and molecular protagonists that may drive cardiac fibrosis and development of heart failure. This review will summarize the application scRNA-seq for understanding cardiac fibrosis and development of heart failure. We will also discuss some key considerations in interpreting scRNA-seq data and some of its limitations.


Subject(s)
Base Sequence , Heart/physiology , Myocardium/metabolism , Transcriptome , Animals , Computational Biology , Fibroblasts/metabolism , Fibrosis/physiopathology , Heart Failure/physiopathology , Homeostasis , Humans , Mice , Myofibroblasts/metabolism , Sequence Analysis, RNA , Single-Cell Analysis
14.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32795101

ABSTRACT

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Subject(s)
Cardiomegaly/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Myocardium/metabolism , Single-Cell Analysis , Stress, Physiological , Animals , Cardiomegaly/pathology , Fibroblasts/pathology , Fibrosis , Mice , Myocardium/pathology , Pyrophosphatases/metabolism , Thrombospondins/metabolism
16.
J Am Coll Cardiol ; 72(18): 2213-2230, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30360829

ABSTRACT

Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.


Subject(s)
Cardiovascular Diseases/physiopathology , Homeostasis/physiology , Macrophages/physiology , Neovascularization, Physiologic/physiology , Animals , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Heart/embryology , Heart/physiology , Humans
17.
Cell Rep ; 22(3): 600-610, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346760

ABSTRACT

Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.


Subject(s)
Gene Expression Profiling/methods , Single-Cell Analysis/methods , Transcriptional Activation/genetics , Animals , Mice
18.
Adv Exp Med Biol ; 1003: 105-118, 2017.
Article in English | MEDLINE | ID: mdl-28667556

ABSTRACT

Macrophages are principally recognized as an important cell type for removal of tissue debris and as sentinels for tissue damage and foreign antigens. However, macrophages also participate in a diverse range of biological processes including angiogenesis, fibrosis, immune modulation, cell survival, and stem cell mobilization. Cardiac tissue macrophages (cTMs) are a heterogeneous population of phagocytic cells with distinct ontogenetic, phenotypic, and functional characteristics. While our understanding of cTMs has increased substantially over the last 5 years, large gaps in our knowledge regarding the cell biology of cTMs exist, in particular, the development of their unique phenotype and their roles in cardiac homeostasis and tissue stress. This review aims to discuss the current knowledge regarding cTMs and identify key questions that must be addressed to gain a better understanding of the role of cTMs in tissue development, homeostasis, and disease.


Subject(s)
Cardiovascular Diseases/immunology , Macrophages/immunology , Myocardium/immunology , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cell Differentiation , Cell Lineage , Homeostasis , Humans , Macrophages/metabolism , Macrophages/pathology , Myocardium/metabolism , Myocardium/pathology , Phenotype , Signal Transduction
19.
Curr Protoc Mouse Biol ; 7(1): 1-12, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28252198

ABSTRACT

The cre-loxP-mediated recombination system (the "cre-loxP system") is an integral experimental tool for mammalian genetics and cell biology. Use of the system has greatly expanded our ability to precisely interrogate gene function in the mouse, providing both spatial and temporal control of gene expression. This has been largely due to the simplicity of its use and its adaptability to address diverse biological questions. While the use of the cre-loxP system is becoming increasingly widespread, in particular because of growing availability of conditional mouse mutants, many considerations need to be taken into account when utilizing the cre-loxP system. This review provides an overview of the cre-loxP system and its various permutations. It addresses the limitations of cre-loxP technology and related considerations for experimental design, and it discusses alternative strategies for site-specific genetic recombination and integration. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Attachment Sites, Microbiological/genetics , Genetic Engineering/methods , Integrases/genetics , Recombination, Genetic , Animals , Anti-Bacterial Agents/pharmacology , Bacteriophage P1/genetics , Base Sequence , Binding Sites/genetics , Doxycycline/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Ligands , Mice , Models, Genetic , Receptors, Estrogen/genetics , Reproducibility of Results
20.
NPJ Regen Med ; 2: 24, 2017.
Article in English | MEDLINE | ID: mdl-29302359
SELECTION OF CITATIONS
SEARCH DETAIL
...