Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(35): 47974-47990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39017862

ABSTRACT

This study investigated the role of ultraviolet (UV) radiation and oxidation in high-density polyethylene microplastics (2-15 µm) and nanoplastics (0.2-9.9 µm) (NMPs) on particle chemistry, morphology, and reactivity with cadmium (Cd). Additionally, toxicity of NMPs alone and with Cd was evaluated using RTgutGC cells, a model of the rainbow trout (Oncorhynchus mykiss) intestine. The role on NMPs on Cd bioaccumulation in RTgutGC cells was also evaluated. Dynamic light scattering indicated that after UV radiation NPs agglomerated size increased from 0.8 to 28 µm, and to 8 µm when Cd was added. Oxidized MPs agglomerated size increased from 11 and 7 to 46 and 27 µm in non-UV- and UV-aged oxidized MPs when adding Cd, respectively. Cd-coated particles exhibited generally significantly higher zeta potential than non-Cd-coated particles, while attenuated total reflectance-Fourier transform infrared spectroscopy showed that the functional chemistry of the particles was oxidized and modified after being exposed to UV radiation. Presence of NMPs resulted in a significant decrease in Cd bioaccumulation in RTgutGC cells (100.5-87.9 ng Cd/mg protein) compared to Cd alone (138.1 ng Cd/mg protein), although this was not quite significant for co-exposures with UV-aged NPs (105.7 ng Cd/mg protein). No toxicity was observed in RTgutGC cells exposed to NMPs alone for 24 h. Moreover, co-exposures with Cd indicated that NMPs reduce the toxicity of Cd. Altogether these results show that UV aging enhances NMP surface reactivity, increasing Cd absorption in solution, which resulted in a reduction in Cd bioavailability and toxicity.


Subject(s)
Bioaccumulation , Cadmium , Oncorhynchus mykiss , Polyethylene , Ultraviolet Rays , Animals , Cadmium/toxicity , Polyethylene/toxicity , Polyethylene/chemistry , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Intestines/drug effects , Oxidation-Reduction
2.
Sci Total Environ ; 945: 173791, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38862041

ABSTRACT

Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 µm non-oxidized and 10-15 µm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.3 µg Hg/L) and chlorpyrifos (CPF, 1.0 µg CPF/L) to adult Acartia tonsa copepods, after 24-48 h exposure. Dose-response experiments were first performed with adult female copepods exposed to oxidized MPs (0.25-4.0 mg/L), waterborne Hg (0.01-10.0 µg/L) and Ox MPs + Hg (0.25-4.0 mg oxidized MPs/L + 0.50-8.0 µg Hg/L) for 48 h, to complement previous studies that focused on the pesticide CPF. Effects were evaluated with four replicates for physiological and reproductive responses (6 females/replicate), biochemical techniques (40 individuals/replicate) and Hg/CPF bioaccumulation measurements (1000 individuals/replicate). Copepods accumulated Hg/CPF similarly from dissolved pollutants (6204 ± 2265 ng Hg/g and 1251 ± 646 ng CPF/g) and loaded MPs (3125 ± 1389 ng Hg/g and 1156 ± 266 ng CPF/g), but significantly less from loaded MA (21 ± 8 ng Hg/g and 173 ± 80 ng CPF/g). After 24-48 h, copepods exposed to MPs + Hg/CPF showed generally greater biological effects than those exposed to dissolved Hg/CPF or to MA + Hg/CPF, although differences were not statistically significant. MA + CPF had significantly lower AChE inhibition (1073.4 nmol min-1 mg-1) and MA + Hg lower GRx induction (48.8 nmol min-1 mg-1) compared to MPs + Hg/CPF and dissolved Hg/CPF (182.8-236.4 nmol min-1 mg-1 of AChE and 74.1-101.7 nmol min-1 mg-1 of GRx). Principal component analysis suggested different modes of action for Hg and CPF.


Subject(s)
Chlorpyrifos , Copepoda , Mercury , Microalgae , Microplastics , Water Pollutants, Chemical , Animals , Mercury/metabolism , Mercury/analysis , Female , Environmental Monitoring
3.
Sci Total Environ ; 857(Pt 3): 159605, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36273570

ABSTRACT

The growing use of plastics, including microplastics (MPs), has enhanced their potential release into aquatic environments, where microalgae represent the basis of food webs. Due to their physicochemical properties, MPs may act as carriers of organic and inorganic pollutants. The present study aimed to determine the toxicity of polyethylene MPs (plain and oxidized) and the model pollutants chlorpyrifos (CPF) and mercury (Hg) on the red microalgae Rhodomonas lens, to contribute to the understanding of the effects of MPs and associated pollutants on marine ecosystems, including the role of MPs as vectors of potentially harmful pollutants to marine food webs. R. lens cultures were exposed to MPs (1-1000 µg/L; 25-24,750 particles/mL), CPF (1-4900 µg/L), Hg (1-500 µg/L), and to CPF- and Hg-loaded MPs, for 96 h. Average specific growth rate (ASGR, day-1), cellular viability and pigment concentration (chlorophyll a, c2 and carotenoids) were measured at 48 and 96 h. No significant effects were observed on the growth pattern of the microalgae after 96-h exposure to plain and oxidized MPs. However, a significant increase in cell concentration was detected after 48-h exposure to plain MPs. A decrease of the ASGR was noticed after exposure to CPF, Hg and to CPF/Hg-loaded MPs, whereas viability was affected by exposure to MPs, CPF and Hg, alone and in combination. Chlorophyll a and c2 significantly decreased when microalgae were exposed to plain MPs and CPF, while both pigments significantly increased when exposed to CPF-loaded MPs. Similarly, chlorophyll and carotenoids content significantly decreased after exposure to Hg, whereas a significant increase in chlorophyll a was observed after 48-h exposure to Hg-loaded MPs, at the higher tested concentration. Overall, the presence of MPs modulates the toxicity of Hg and CPF to these microalgae, decreasing the toxic effects on R. lens, probably due to a lower bioavailability of the contaminants.


Subject(s)
Chlorpyrifos , Mercury , Microalgae , Water Pollutants, Chemical , Microplastics , Chlorpyrifos/toxicity , Plastics/toxicity , Mercury/toxicity , Chlorophyll A , Ecosystem , Water Pollutants, Chemical/toxicity , Carotenoids
4.
Toxins (Basel) ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807311

ABSTRACT

Tetrodotoxin (TTX) is a potent neurotoxin, considered an emerging toxin in Europe where recently a safety limit of 44 µg TTX kg-1 was recommended by authorities. In this study, three specimens of the large gastropod trumpet shell Charonia lampas bought in a market in south Portugal were analyzed using a neuroblastoma cell (N2a) based assay and by LC-MS/MS. N2a toxicity was observed in the viscera of two individuals analyzed and LC-MS/MS showed very high concentrations of TTX (42.1 mg kg-1) and 4,9-anhydroTTX (56.3 mg kg-1). A third compound with m/z 318 and structurally related with TTX was observed. In the edible portion, i.e., the muscle, toxin levels were below the EFSA recommended limit. This study shows that trumpet shell marine snails are seafood species that may reach the markets containing low TTX levels in the edible portion but containing very high levels of TTX in non-edible portion raising concerns regarding food safety if a proper evisceration is not carried out by consumers. These results highlight the need for better understanding TTX variability in this gastropod species, which is critical to developing a proper legal framework for resources management ensuring seafood safety, and the introduction of these gastropods in the markets.


Subject(s)
Food Contamination , Gastropoda/chemistry , Seafood/analysis , Tetrodotoxin/analysis , Animals , Biological Monitoring , Cell Line, Tumor , Chromatography, Liquid , Humans , Oceans and Seas , Risk Assessment , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
5.
Mar Environ Res ; 151: 104780, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31514973

ABSTRACT

The presence in EU waters of invasive tetrodotoxin (TTX) -harbouring puffer fishes has been receiving increasingly attention due to potential new threats posed by this potent neurotoxin. The present study investigates the occurrence of tetrodotoxin, saxitoxin (STX), and their analogues in two native puffer fish species from the NE Atlantic. High TTX content was detected by LC-MS/MS in several tissues of the Guinean puffer Sphoeroides marmoratus from Madeira Island (Portugal), reaching concentrations as high as 15 mg TTX kg-1 in the digestive tract of a male specimen and 7.4 mg TTX kg-1 in gonads of a female specimen. Several TTX analogues were also detected, including the 4-epi-TTX, 4,9-Anhydro-TTX, 5- 11- deoxyTTX and 6,11-dideoxyTTX. Although at low levels, STX was detected in liver of the Oceanic puffer Lagocephalus lagocephalus. Trace levels of decarbamoylsaxitoxin (dcSTX) were also observed in L. lagocephalus. This study reports the presence of TTX and STX in native fish from EU waters, highlighting the need for a proper understating of the origin, distribution and fate of these toxins in NE Atlantic.


Subject(s)
Saxitoxin , Tetraodontiformes , Tetrodotoxin , Animals , Atlantic Ocean , Chromatography, Liquid , Female , Male , Portugal , Saxitoxin/isolation & purification , Tandem Mass Spectrometry , Tetrodotoxin/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...