Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 183: 109223, 2020 04.
Article in English | MEDLINE | ID: mdl-32045729

ABSTRACT

Flutamide (FLUT) is a non-steroidal drug mainly used in the treatment of prostate cancer and has been detected in the aquatic environment at ng L-1 levels. The environmental fate and effects of FLUT have not yet been studied. Conventional treatment technologies fail to completely remove pharmaceuticals, so the solar photo-Fenton process (SPF) has been proposed as an alternative. In this study, the degradation of FLUT, at two different initial concentrations in ultra-pure water, was carried out by SPF. The initial SPF conditions were pH0 5, [Fe2+]0 = 5 mg L-1, and [H2O2]0 = 50 mg L-1. Preliminary elimination rates of 53.4% and 73.4%. The kinetics of FLUT degradation could be fitted by a pseudo-first order model and the kobs were 6.57 × 10-3 and 9.13 × 10-3 min-1 t30W and the half-life times were 95.62 and 73.10 min t30W were achieved for [FLUT]0 of 5 mg L-1 and 500 µg L-1, respectively. Analysis using LC-QTOF MS identified thirteen transformation products (TPs) during the FLUT degradation process. The main degradation pathways proposed were hydroxylation, hydrogen abstraction, demethylation, NO2 elimination, cleavage, and aromatic ring opening. Different in silico (quantitative) structure-activity relationship ((Q)SAR) freeware models were used to predict the toxicities and environmental fates of FLUT and the TPs. The in silico predictions indicated that these substances were not biodegradable, while some TPs were classified near the threshold point to be considered as PBT compounds. The in silico (Q)SAR predictions gave positive alerts concerning the mutagenicity and carcinogenicity endpoints. Additionally, the (Q)SAR toolbox software provided structural alerts corresponding to the positive alerts obtained with the different mutagenicity and carcinogenicity models, supporting the positive alerts with more proactive information.


Subject(s)
Antineoplastic Agents , Flutamide , Water Pollutants, Chemical , Flutamide/chemistry , Hydrogen Peroxide , Hydrogen-Ion Concentration , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...