Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1127656, 2023.
Article in English | MEDLINE | ID: mdl-37235020

ABSTRACT

Successful establishment of Pinus ponderosa seedlings in the southwestern United States is often limited by stressful and harsh site conditions related to drought severity and severe disturbances such as wildfire and mining operations. Seedling quality has an important influence on outplanting performance, but nursery practices that typically employ optimal growing environments may also be limiting seedling morphological and physiological performance on stressful outplanting sites. To address this, a study was established to test alterations in seedling characteristics subjected to irrigation limitations during nursery culture and their subsequent outplanting performance. This study was conducted as two separate experiments: (1) a nursery conditioning experiment examined seedling development of three New Mexico seed sources exposed to three irrigation levels (low, moderate, and high); (2) a simulated outplanting experiment examined a subset of the seedlings from experiment 1 in a controlled outplanting environment consisting of two soil moisture conditions (mesic, maintained via irrigation and dry, irrigated only once). In the nursery study, the lack of interactions between seed source and irrigation main effects for most response variables indicate that low irrigation treatment level responses were consistent across a range of sources. Irrigation treatment levels from the nursery resulted in few morphological differences; however, the low irrigation level increased physiological parameters such as net photosynthetic rate and water use efficiency. In the simulated outplanting experiment, seedlings subjected to less irrigation in the nursery had greater mean height, diameter, needle dry mass, and stem dry mass; additionally, low irrigation levels in the nursery increased the amount of hydraulically active xylem and xylem flow velocity. Overall, this study shows that nursery culture irrigation limitations, regardless of the seed sources tested, can improve seedling morphology and physiological functioning under simulated dry outplanting conditions. This may ultimately translate to increased survival and growth performance on harsh outplanting sites.

2.
Front Plant Sci ; 11: 557894, 2020.
Article in English | MEDLINE | ID: mdl-33013975

ABSTRACT

In the western US, quaking aspen (Populus tremuloides Michx.) regenerates primarily by root suckers after disturbances such as low to moderate severity fires. Planting aspen seedlings grown from seed may provide a mechanism to improve restoration success and genetic diversity on severely disturbed sites. However, few studies have examined the use of container-grown aspen seedlings for restoration purposes from both the outplanting and nursery production perspective. Thus, the purpose of this novel study was to examine how alterations in irrigation levels during nursery production across three seed sources would impact seedling performance attributes on harsh, dry outplanting sites. Irrigation treatments were based on three irrigation levels, determined gravimetrically: High = 90%, Medium = 80%, and Low = 70% of container capacity. The three seed sources represented a latitudinal gradient across the aspen range (New Mexico, Utah, and Alberta). Carbon isotope analysis indicated irrigation treatments were effective in creating higher levels of water stress for both the Low and Medium irrigation levels compared to seedlings under the High irrigation level. Seedlings subject to the Low irrigation level were found to induce greater height, higher photosynthetic rates, larger percentages of hydraulically active xylem, and faster xylem flow velocities compared to the High irrigation level. The lack of an interaction between irrigation treatments and seed source for nearly all response variables suggests that nursery conditioning via irrigation limitations may be effective for a range of aspen seed sources.

3.
Front Plant Sci ; 10: 1308, 2019.
Article in English | MEDLINE | ID: mdl-31695714

ABSTRACT

Our objective was to better understand how organic and inorganic nitrogen (N) forms supplied to a tree, Robinia pseudoacacia, and a perennial forb, Lupinus latifolius, affected plant growth and performance of their symbiotic, N-fixing rhizobia. In one experiment, we tested five sources of N [none; three inorganic forms (ammonium, nitrate, ammonium-nitrate); and an organic form (arginine)] in combination with or without rhizobia inoculation. We measured seedling morphology, allometry, nodule biomass, and N status. A second experiment explored combinations of supplied 15N and inoculation to examine if inorganic or organic N was deleterious to nodule N-fixation. Plant growth was similar among N forms. A positive response of nodule biomass to N was greater in Robinia than Lupinus. For Robinia, inorganic ammonium promoted more nodule biomass than organic arginine. N-fixation was concurrent with robust supply of either inorganic or organic N, and N supply and inoculation significantly interacted to enhance growth of Robinia. For Lupinus, the main effects of inoculation and N supply increased growth but no interaction was observed. Our results indicate that these important restoration species for forest ecosystems respond well to organic or inorganic N forms (or various forms of inorganic N), suggest that the nodulation response may depend on plant species, and show that, in terms of plant growth, N supply and nodulation can be synergistic.

SELECTION OF CITATIONS
SEARCH DETAIL
...