Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5933, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009621

ABSTRACT

The Marine Isotope Stage (MIS) 11c interglacial and its preceding glacial termination represent an enigmatically intense climate response to relatively weak insolation forcing. So far, a lack of radiometric age control has confounded a detailed assessment of the insolation-climate relationship during this period. Here, we present 230Th-dated speleothem proxy data from northern Italy and compare them with palaeoclimate records from the North Atlantic region. We find that interglacial conditions started in subtropical to middle latitudes at 423.1 ± 1.3 thousand years (kyr) before present, during a first weak insolation maximum, whereas northern high latitudes remained glaciated (sea level ~ 40 m below present). Some 14.5 ± 2.8 kyr after this early subtropical onset, peak interglacial conditions were reached globally, with sea level 6-13 m above present, despite weak insolation forcing. We attribute this remarkably intense climate response to an exceptionally long (~15 kyr) episode of intense poleward heat flux transport prior to the MIS 11c optimum.

2.
Sci Total Environ ; 870: 161883, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36736407

ABSTRACT

Heat waves are extreme events characterized by sweltering weather over an extended period. Skillful projections of heat waves and their impacts on human mortality can help develop appropriate adaptation strategies. Here, we provide nuanced projections of heat wave characteristics and their effect on human mortality over the Eastern Mediterranean based on ERA5 reanalysis and CORDEX ensemble simulations. Heat waves were identified according to the 90th percentile threshold of the Climatic Stress Index (CSI), specifically tailored for the summer conditions in this region. We provide evidence that heat waves in the region are projected to occur seven times more often and last three times longer by the end of the 21st century (RCP8.5). We find that heat waves will become more persistent in a warmer world. Finally, we offer a conservative estimate of excess mortality in Israel based on a simple linear model. The projected changes in heat stress intensity and frequency may result in ~330 excess deaths per summer at the end of the 21st century (RCP8.5) compared to the historical baseline of ~30 heat-related deaths, particularly pronounced in the elderly (65+ years). We conclude that heat waves increasingly threaten society in the vulnerable Eastern Mediterranean. We also emphasize that true interdisciplinary regional collaborations are required to achieve adequate public health adaptation to extreme weather events in a changing climate.


Subject(s)
Climate Change , Public Health , Humans , Aged , Hot Temperature , Seasons , Acclimatization , Mortality
3.
New Phytol ; 231(5): 1784-1797, 2021 09.
Article in English | MEDLINE | ID: mdl-34076289

ABSTRACT

Interaction effects of different stressors, such as extreme drought and plant invasion, can have detrimental effects on ecosystem functioning and recovery after drought. With ongoing climate change and increasing plant invasion, there is an urgent need to predict the short- and long-term interaction impacts of these stressors on ecosystems. We established a combined precipitation exclusion and shrub invasion (Cistus ladanifer) experiment in a Mediterranean cork oak (Quercus suber) ecosystem with four treatments: (1) Q. suber control; (2) Q. suber with rain exclusion; (3) Q. suber invaded by shrubs; and (4) Q. suber with rain exclusion and shrub invasion. As key parameter, we continuously measured ecosystem water fluxes. In an average precipitation year, the interaction effects of both stressors were neutral. However, the combination of imposed drought and shrub invasion led to amplifying interaction effects during an extreme drought by strongly reducing tree transpiration. Contrarily, the imposed drought reduced the competitiveness of the shrubs in the following recovery period, which buffered the negative effects of shrub invasion on Q. suber. Our results demonstrate the highly dynamic and nonlinear effects of interacting stressors on ecosystems and urges for further investigations on biotic interactions in a context of climate change pressures.


Subject(s)
Droughts , Quercus , Ecosystem , Trees , Water
4.
Sci Total Environ ; 750: 141686, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32861075

ABSTRACT

The prediction of the occurrence of infectious diseases is of crucial importance for public health, as clearly seen in the ongoing COVID-19 pandemic. Here, we analyze the relationship between the occurrence of a winter low-pressure weather regime - Cyprus Lows - and the seasonal Influenza in the Eastern Mediterranean. We find that the weekly occurrence of Cyprus Lows is significantly correlated with clinical seasonal Influenza in Israel in recent years (R = 0.91; p < .05). This result remains robust when considering a complementary analysis based on Google Trends data for Israel, the Palestinian Authority and Jordan. The weekly occurrence of Cyprus Lows precedes the onset and maximum of Influenza occurrence by about one to two weeks (R = 0.88; p < .05 for the maximum occurrence), and closely follows their timing in eight out of ten years (2008-2017). Since weather regimes such as Cyprus Lows are more robustly predicted in weather and climate models than individual climate variables, we conclude that the weather regime approach can be used to develop tools for estimating the compatibility of the transmission environment for Influenza occurrence in a warming world. Furthermore, this approach may be applied to other regions and climate sensitive diseases. This study is a new cross-border inter-disciplinary regional collaboration for appropriate adaptation to climate change in the Eastern Mediterranean.


Subject(s)
Coronavirus Infections , Influenza, Human , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Cyprus/epidemiology , Humans , Influenza, Human/epidemiology , Israel/epidemiology , Jordan , SARS-CoV-2 , Seasons , Weather
5.
Sci Rep ; 9(1): 19971, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882778

ABSTRACT

Mitigating climate change demands a transition towards renewable electricity generation, with wind power being a particularly promising technology. Long periods either of high or of low wind therefore essentially define the necessary amount of storage to balance the power system. While the general statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of wind is far from well understood. Here, we investigate the statistics of both high- and low-wind persistence. We find heavy tails and explain them as a superposition of different wind conditions, requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual weather types but may emerge as a combination of multiple weather types and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence statistically and synoptically may help to ensure a reliable and economically feasible future energy system, which uses a high share of wind generation.

6.
Ann N Y Acad Sci ; 1436(1): 54-69, 2019 01.
Article in English | MEDLINE | ID: mdl-29863800

ABSTRACT

Regional climate modeling bridges the gap between the coarse resolution of current global climate models and the regional-to-local scales, where the impacts of climate change are of primary interest. Here, we present a review of the added value of the regional climate modeling approach within the scope of paleoclimate research and discuss the current major challenges and perspectives. Two time periods serve as an example: the Holocene, including the Last Millennium, and the Last Glacial Maximum. Reviewing the existing literature reveals the benefits of regional paleo climate modeling, particularly over areas with complex terrain. However, this depends largely on the variable of interest, as the added value of regional modeling arises from a more realistic representation of physical processes and climate feedbacks compared to global climate models, and this affects different climate variables in various ways. In particular, hydrological processes have been shown to be better represented in regional models, and they can deliver more realistic meteorological data to drive ice sheet and glacier modeling. Thus, regional climate models provide a clear benefit to answer fundamental paleoclimate research questions and may be key to advance a meaningful joint interpretation of climate model and proxy data.


Subject(s)
Climate Change , Ecosystem , Models, Theoretical , Temperature
7.
PLoS One ; 13(8): e0201457, 2018.
Article in English | MEDLINE | ID: mdl-30133464

ABSTRACT

The high temporal variability of wind power generation represents a major challenge for the realization of a sustainable energy supply. Large backup and storage facilities are necessary to secure the supply in periods of low renewable generation, especially in countries with a high share of renewables. We show that strong climate change is likely to impede the system integration of intermittent wind energy. To this end, we analyze the temporal characteristics of wind power generation based on high-resolution climate projections for Europe and uncover a robust increase of backup energy and storage needs in most of Central, Northern and North-Western Europe. This effect can be traced back to an increase of the likelihood for long periods of low wind generation and an increase in the seasonal wind variability.


Subject(s)
Climate Change , Forecasting , Power Plants/trends , Wind , Europe , Power Plants/organization & administration
8.
Sci Rep ; 5: 15110, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26461978

ABSTRACT

Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.


Subject(s)
Climate , Droughts , Ecosystem , Plant Weeds/physiology , Quercus/physiology , Water/metabolism , Plant Transpiration/physiology , Species Specificity , Stress, Physiological/physiology
9.
PLoS One ; 9(9): e108078, 2014.
Article in English | MEDLINE | ID: mdl-25251495

ABSTRACT

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.


Subject(s)
Climate , Soil/chemistry , Vitis/growth & development , Climate Change , Portugal , Spain
10.
Int J Biometeorol ; 55(2): 119-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20461417

ABSTRACT

The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO(2) may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.


Subject(s)
Climate Change/statistics & numerical data , Data Interpretation, Statistical , Models, Statistical , Vitis/growth & development , Computer Simulation , Portugal
SELECTION OF CITATIONS
SEARCH DETAIL
...