Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 41(2): 111462, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36223740

ABSTRACT

Poly(ADP)ribosylation inhibitors (PARPis) are toxic to cancer cells with homologous recombination (HR) deficiency but not to HR-proficient cells in the tumor microenvironment (TME), including tumor-associated macrophages (TAMs). As TAMs can promote or inhibit tumor growth, we set out to examine the effects of PARP inhibition on TAMs in BRCA1-related breast cancer (BC). The PARPi olaparib causes reprogramming of TAMs toward higher cytotoxicity and phagocytosis. A PARPi-related surge in NAD+ increases glycolysis, blunts oxidative phosphorylation, and induces reverse mitochondrial electron transport (RET) with an increase in reactive oxygen species (ROS) and transcriptional reprogramming. This reprogramming occurs in the absence or presence of PARP1 or PARP2 and is partially recapitulated by addition of NAD derivative methyl-nicotinamide (MNA). In vivo and ex vivo, the effect of olaparib on TAMs contributes to the anti-tumor efficacy of the PARPi. In vivo blockade of the "don't-eat-me signal" with CD47 antibodies in combination with olaparib improves outcomes in a BRCA1-related BC model.


Subject(s)
CD47 Antigen , Poly(ADP-ribose) Polymerase Inhibitors , Adenosine Diphosphate , Cell Line, Tumor , Macrophages , NAD , Niacinamide , Phenotype , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Reactive Oxygen Species
2.
NMR Biomed ; 34(8): e4560, 2021 08.
Article in English | MEDLINE | ID: mdl-34086382

ABSTRACT

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Subject(s)
Breast Neoplasms/enzymology , Gene Deletion , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/genetics , Lung Neoplasms/enzymology , Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism , Animals , BRCA1 Protein/metabolism , Breast Neoplasms/diagnostic imaging , Female , Lactate Dehydrogenase 5/metabolism , Lung Neoplasms/diagnostic imaging , Mice , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Pyridones/administration & dosage , Pyridones/pharmacology , Symporters/metabolism , Thiophenes/administration & dosage , Thiophenes/pharmacology
3.
Cancer Discov ; 9(6): 722-737, 2019 06.
Article in English | MEDLINE | ID: mdl-31015319

ABSTRACT

Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T-cell infiltration and activation in vivo, and that CD8+ T-cell depletion severely compromises antitumor efficacy. Olaparib-induced T-cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared with HR-proficient TNBC cells and in vivo models. CRISPR-mediated knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T-cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC. SIGNIFICANCE: This work demonstrates cross-talk between PARP inhibition and the tumor microenvironment related to STING/TBK1/IRF3 pathway activation in cancer cells that governs CD8+ T-cell recruitment and antitumor efficacy. The data provide insight into the mechanism of action of PARP inhibitors in BRCA-associated breast cancer.This article is highlighted in the In This Issue feature, p. 681.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Proteins/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/metabolism , BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , Biomarkers , CD8-Positive T-Lymphocytes/drug effects , Female , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...