Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 13(1): 1-21, 2021.
Article in English | MEDLINE | ID: mdl-33970782

ABSTRACT

Helicobacter pylori infects approximately half of the world's population and is the strongest risk factor for peptic ulcer disease and gastric cancer, representing a major global health concern. H. pylori persistently colonizes the gastric epithelium, where it subverts the highly organized structures that maintain epithelial integrity. Here, a unique strategy used by H. pylori to disrupt the gastric epithelial junctional adhesion molecule-A (JAM-A) is disclosed, using various experimental models that include gastric cell lines, primary human gastric cells, and biopsy specimens of infected and non-infected individuals. H. pylori preferentially cleaves the cytoplasmic domain of JAM-A at Alanine 285. Cells stably transfected with full-length JAM-A or JAM-A lacking the cleaved sequence are used in a range of functional assays, which demonstrate that the H. pylori cleaved region is critical to the maintenance of the epithelial barrier and of cell-cell adhesion. Notably, by combining chromatography techniques and mass spectrometry, PqqE (HP1012) is purified and identified as the H. pylori virulence factor that cleaves JAM-A, uncovering a previously unreported function for this bacterial protease. These findings propose a novel mechanism for H. pylori to disrupt epithelial integrity and functions, breaking new ground in the understanding of the pathogenesis of this highly prevalent and clinically relevant infection.


Subject(s)
Gastric Mucosa/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/enzymology , Junctional Adhesion Molecule A/metabolism , Virulence Factors/metabolism , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gastric Mucosa/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Humans , Junctional Adhesion Molecule A/chemistry , Junctional Adhesion Molecule A/genetics , Protein Domains , Virulence Factors/genetics
2.
Biomaterials ; 257: 120218, 2020 10.
Article in English | MEDLINE | ID: mdl-32736253

ABSTRACT

Radiotherapy (RT) is an essential treatment modality for several types of cancer. Despite its therapeutic potential, RT is frequently insufficient to overcome the immunosuppressive nature of the tumor microenvironment, failing to control tumor metastases. Innovative immunomodulatory strategies, like immunostimulatory biomaterials could be used to boost the immunogenic effects of RT. Herein, we addressed the synergistic potential of immunostimulatory chitosan/poly(γ-glutamic acid) nanoparticles (Ch/γ-PGA NPs) combined with RT to induce antitumor immunity in the 4T1 orthotopic breast tumor mouse model. Non-treated animals had progressive primary tumor growth and developed splenomegaly and lung metastases. While RT decreased primary tumor burden, Ch/γ-PGA NPs-treatment decreased systemic immunosuppression and lung metastases. The combination therapy (RT + Ch/γ-PGA NPs) synergistically impaired 4T1 tumor progression, which was associated with a significant primary tumor growth and splenomegaly reduction, a decrease in the percentage of splenic immunosuppressive myeloid cells and an increase in antitumoral CD4+IFN-γ+ population. Notably, animals from the combination therapy presented less and smaller lung metastatic foci and lower levels of the systemic pro-tumor cytokines IL-3, IL-4, IL-10, and of the CCL4 chemokine, in comparison to non-treated animals. Overall, these results evidenced that Ch/γ-PGA NPs potentiate and synergize with RT, headlining their promising role as adjuvant anticancer strategies.


Subject(s)
Chitosan , Mammary Neoplasms, Experimental , Nanoparticles , Animals , Female , Immunotherapy , Mammary Neoplasms, Experimental/therapy , Mice , Polyglutamic Acid/analogs & derivatives
3.
Front Immunol ; 10: 1875, 2019.
Article in English | MEDLINE | ID: mdl-31481956

ABSTRACT

Macrophages are one of the immune populations frequently found in colorectal tumors and high macrophage infiltration has been associated with both better and worst prognosis. Importantly, according to microenvironment stimuli, macrophages may adopt different polarization profiles, specifically the pro-inflammatory or M1 and the anti-inflammatory or M2, which display distinct functions. Therefore, concomitantly with the number of tumor-associated macrophages (TAMs), their characterization is fundamental to unravel their relevance in cancer. Here, we profiled macrophages in a series of 150 colorectal cancer (CRC) cases by immunohistochemistry, using CD68 as a macrophage lineage marker, CD80 as a marker of pro-inflammatory macrophages, and CD163 as a marker of anti-inflammatory macrophages. Quantifications were performed by computer-assisted analysis in the intratumoral region, tumor invasive front, and matched tumor adjacent normal mucosa (ANM). Macrophages, specifically the CD163+ ones, were predominantly found at the tumor invasive front, whereas CD80+ macrophages were almost exclusively located in the ANM, which suggests a predominant anti-inflammatory polarization of TAMs. Stratification according to tumor stage revealed that macrophages, specifically the CD163+ ones, are more prevalent in stage II tumors, whereas CD80+ macrophages are predominant in less invasive T1 tumors. Specifically in stage III tumors, higher CD68, and lower CD80/CD163 ratio associated with decreased overall survival. Importantly, despite the low infiltration of CD80+ cells in colorectal tumors, multivariate logistic regression revealed a protective role of these cells regarding the risk for relapse. Overall, this work supports the involvement of distinct microenvironments, present at the intra-tumor, invasive front and ANM regions, on macrophage modulation, and uncovers their prognostic value, further supporting the relevance of including macrophage profiling in clinical settings.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Macrophages/immunology , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/mortality , Female , Humans , Male , Middle Aged , Prognosis , Young Adult
4.
Biomater Sci ; 7(8): 3386-3403, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31233057

ABSTRACT

IFN-γ therapy has been approved by the Food and Drug Administration (FDA) for the treatment of chronic granulomatous disease and severe malignant osteopetrosis. Despite the promising IFN-γ-based therapeutic applications, its limited success in clinical trials is related with limitations inherent to its molecular properties and with the difficulties to deliver it locally or with adequate periodicity to achieve a therapeutic effect. We have previously shown that chitosan (Ch)/poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) are immunostimulatory, impairing colorectal cancer cell invasion. Ch is a biocompatible cationic polysaccharide extensively studied and already approved for biomedical applications while γ-PGA is a poly(amino acid), biodegradable and negatively charged. Here, we evaluated the potential of Ch/γ-PGA NPs as vehicles for IFN-γ and their ability to modulate immune cells' phenotype. In this study, Ch/IFN-γ/γ-PGA nanoparticles (IFN-γ-NPs) prepared by a co-acervation method, presenting a size of approximately 180 nm and a low polydispersity index, were tested for their immunomodulatory activity. These IFN-γ-NPs induced an immunostimulatory profile on dendritic cells (DCs) with increased cell surface costimulatory molecules and secretion of pro-inflammatory cytokines, including IL-6, IL-12p40 and TNF-α. IFN-γ-NPs also modulated the IL-10-stimulated macrophage profile, increasing their ability to secrete the pro-inflammatory cytokines IL-6, IL-12p40 and TNF-α. Concomitantly, these phenotypic alterations enhanced T cell proliferation. In addition, the ability of DCs and macrophages to induce colorectal cancer cell invasion was hampered in the presence of IFN-γ-NPs. Although the major observations were mediated by Ch/γ-PGA NPs, the incorporation of IFN-γ into NPs potentiated the expression of CD40 and CD86, and the impairment of colorectal cancer cell invasion. This work bridges the previously reported immunostimulatory capacity of Ch/γ-PGA NPs with their potential as carriers for immunomodulatory molecules, like IFN-γ, opening new avenues for their use in clinical settings.


Subject(s)
Chitosan/chemistry , Colorectal Neoplasms/immunology , Interferon-gamma/chemistry , Interferon-gamma/pharmacology , Nanoparticles/chemistry , Polyglutamic Acid/analogs & derivatives , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Drug Carriers/chemistry , Drug Liberation , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Macrophages/drug effects , Macrophages/immunology , Neoplasm Invasiveness , Phosphorylation/drug effects , Polyglutamic Acid/chemistry , STAT1 Transcription Factor/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
5.
Gastric Cancer ; 22(1): 77-90, 2019 01.
Article in English | MEDLINE | ID: mdl-29779068

ABSTRACT

BACKGROUND: Gastric cancer with lymphoid stroma (GCLS) is characterized by prominent stromal infiltration of T-lymphocytes. The aim of this study was to investigate GCLS biology through analysis of clinicopathological features, EBV infection, microsatellite instability (MSI), immune gene-expression profiling and PD-L1 status in neoplastic cells and tumor immune microenvironment. METHODS: Twenty-four GCLSs were analyzed by RNA in situ hybridization for EBV (EBER), PCR/fragment analysis for MSI, immunohistochemistry (PD-L1, cytokeratin, CD3, CD8), co-immunofluorescence (CK/PD-L1, CD68/PD-L1), NanoString gene-expression assay for immune-related genes and PD-L1 copy number alterations. CD3+ and CD8+ T-cell densities were calculated by digital analysis. Fifty-four non-GCLSs were used as control group. RESULTS: GCLSs displayed distinctive clinicopathological features, such as lower pTNM stage (p = 0.02) and better overall survival (p = 0.01). EBV+ or MSI-high phenotype was found in 66.7 and 16.7% cases, respectively. GCLSs harbored a cytotoxic T-cell-inflamed profile, particularly at the invasive front of tumors (p < 0.01) and in EBV+ cases (p = 0.01). EBV+ GCLSs, when compared to EBV- GCLSs, showed higher mRNA expression of genes related to Th1/cytotoxic and immunosuppressive biomarkers. PD-L1 protein expression, observed in neoplastic and immune stromal cells (33.3 and 91.7%, respectively), and PD-L1 amplification (18.8%) were restricted to EBV+/MSI-high tumors and correlated with high values of PD-L1 mRNA expression. CONCLUSIONS: This study shows that GCLS has a distinctive clinico-pathological and molecular profile. Furthermore, through an in-depth study of tumor immune microenvironment-by digital analysis and mRNA expression profiling-it highlights the role of EBV infection in promoting an inflamed tumor microenvironment, with putative therapeutic implications.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Stomach Neoplasms/pathology , Tumor Microenvironment/immunology , Adult , Aged , B7-H1 Antigen/biosynthesis , Epstein-Barr Virus Infections/complications , Female , Herpesvirus 4, Human , Humans , Immunophenotyping , Inflammation/genetics , Inflammation/immunology , Male , Microsatellite Instability , Middle Aged , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , Tumor Microenvironment/genetics
6.
Acta Biomater ; 63: 96-109, 2017 11.
Article in English | MEDLINE | ID: mdl-28919508

ABSTRACT

Anticancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals provided by antigen-presenting cells (APCs). However, it is described that immature dendritic cells (DCs) and macrophages at the tumor site may have an immunosuppressive profile, which limits the activity of effector T cells and supports tumor progression. Therapeutic targeting of these innate immune cells, either aiming at their elimination or re-polarization towards an immunostimulatory profile, has been pointed as an attractive approach to control tumor progression. In the present work, we assessed the potential of Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) to modulate macrophages and DCs inflammatory profile and to impair their ability to promote cancer cell invasion. Interestingly, Ch/γ-PGA NPs, prepared by co-acervation method, induced an immunostimulatory DCs phenotype, enhancing the expression of the co-stimulatory molecules CD86, CD40 and HLA-DR, and the secretion of the pro-inflammatory cytokines TNF-α, IL-12p40 and IL-6. Furthermore, Ch/γ-PGA NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the expression of CD163 and promoting the secretion of IL-12p40 and TNF-α. These alterations in the immune cells phenotype promoted CD4+ and CD8+ T cell activation/proliferation and partially inhibited APCs' ability to induce colorectal cancer cell invasion. Overall, our findings open new perspectives on the use of Ch/γ-PGA NPs as an immunomodulatory therapy for antigen-presenting cells reprogramming, providing a new tool for anticancer therapies. STATEMENT OF SIGNIFICANCE: The immune system is responsible to detect and destroy abnormal cells preventing the development of cancer. However, the immunosuppressive tumor microenvironment can compromise the immune response favoring tumor progression. Thus, immune system modulation towards an immunostimulatory profile can improve anticancer therapies. This research focus on the development of chitosan/poly(γ-glutamic acid) nanoparticles (NPs) to modulate human antigen-presenting cells (APCs) phenotype and to counteract their pro-invasive capacity. Interestingly, Ch/γ-PGA NPs had a prominent effect in inducing macrophages and dendritic cells immunostimulatory phenotype, thus favoring T cell proliferation and inhibiting colorectal cancer cell invasion. We propose that their combination with other immunomodulatory drugs or conventional anticancer therapies can improve patients' outcome.


Subject(s)
Antigen-Presenting Cells/pathology , Cell Movement , Chitosan/adverse effects , Inflammation/pathology , Nanoparticles/adverse effects , Polyglutamic Acid/analogs & derivatives , Antigen-Presenting Cells/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/pathology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Endocytosis/drug effects , Humans , Interleukin-10/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Neoplasm Invasiveness , Particle Size , Phenotype , Polyglutamic Acid/administration & dosage , Polyglutamic Acid/adverse effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
7.
Acta Biomater ; 49: 296-305, 2017 02.
Article in English | MEDLINE | ID: mdl-27856281

ABSTRACT

Modulation of inflammatory responses to implanted biomaterials towards tissue regeneration has gained prominence as an innovative tissue engineering strategy. Recent in vitro and in vivo studies showed that Fibrinogen (Fg) adsorbed to Chitosan (Ch) substrates modulates immune cell responses, enhances the production of osteogenic factors by monocytes/macrophages and promotes bone regeneration, but the mechanisms involved remain poorly understood. Thus, the present work was conducted to clarify the molecular mechanisms of interaction between primary human monocytes and the above substrates. Cell surface expression of TLR-4 was significantly downregulated in the presence of pre-adsorbed Fg, when compared to Ch control, indicating an interaction via this receptor. The same substrate triggered MAPK activation, specifically the ERK 1/2 and JNK pathways. Importantly, both ERK 1/2 and JNK phosphorylation were reduced when TLR-4 signalling was blocked using a specific pharmacological inhibitor. Functionally, adsorbed Fg induced production of the potent osteogenic mediator BMP-2 by monocytes, while TLR-4 inhibition resulted in a significant decrease of BMP-2 mRNA and protein levels, in response to Fg stimulation. Overall, our data reveals that adsorbed Fg exerts a pro-osteogenic effect on human monocytes through its interaction with TLR-4 and subsequent production of BMP-2, elucidating two key aspects of the immunomodulatory action of adsorbed Fg in bone regeneration. STATEMENT OF SIGNIFICANCE: Recent studies showed that when Fibrinogen (Fg) is used to modify Chitosan (Ch) substrates, it modulates the immune response, enhances production of osteogenic factors by monocytes/macrophages, and promotes bone regeneration. However, the mechanisms involved in monocyte-Fg interaction, were only partially known. Current work addresses the interaction between primary human monocytes and Ch surfaces modified by Fg adsorption (Ch-Fg) at the molecular level. Results show that monocytes interact specifically with Ch-Fg via TLR-4, triggering particular intracellular signalling pathways (ERK and JNK, but not p38), downstream of TLR-4. Functionally, Ch-Fg induced monocytes to produce the osteogenic mediator BMP-2. Thus, we clarify herein two essential aspects of the interaction between adsorbed Fg and monocytes, with impact on immunomodulation and regeneration, upon biomaterial implantation.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Fibrinogen/pharmacology , Monocytes/metabolism , Toll-Like Receptor 4/metabolism , Adsorption , Cell Membrane/metabolism , Cells, Cultured , Chitosan/pharmacology , Down-Regulation , Enzyme Activation/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Monocytes/drug effects , Up-Regulation/drug effects
8.
PLoS One ; 11(8): e0160891, 2016.
Article in English | MEDLINE | ID: mdl-27513864

ABSTRACT

Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy.


Subject(s)
Cell Communication/radiation effects , Colorectal Neoplasms/pathology , Macrophages/physiology , Animals , Cell Line, Tumor , Chick Embryo , Coculture Techniques , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Glucose Transport Proteins, Facilitative/metabolism , Humans , Macrophages/metabolism , Macrophages/radiation effects , Neoplasm Invasiveness
9.
BMC Cancer ; 15: 456, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26043921

ABSTRACT

BACKGROUND: The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. METHODS: Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. RESULTS: Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was essential for macrophage-mediated cancer cell invasion and angiogenesis. CONCLUSIONS: We propose that IL-10- and LPS-stimulated macrophages distinctly modulate gastric and colorectal cancer cell behaviour, as result of distinct proteolytic profiles that impact cell invasion and angiogenesis.


Subject(s)
Colorectal Neoplasms/genetics , Macrophages/metabolism , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Stomach Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Interleukin-10/metabolism , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Neoplasm Invasiveness/genetics , Neoplasm Proteins/biosynthesis , Neovascularization, Pathologic/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
10.
Acta Biomater ; 23: 157-171, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26013040

ABSTRACT

Macrophages represent a large component of the tumour microenvironment and are described to establish interactions with cancer cells, playing crucial roles in several stages of cancer progression. The functional plasticity of macrophages upon stimulation from the environment makes them susceptible to the influence of cancer cells and also renders them as promising therapeutic targets. In this work, we describe a drug delivery system to modulate the phenotype of macrophages, converting them from the pro-tumour M2 phenotype to the anti-tumour M1 phenotype, based on the incorporation of a pro-inflammatory cytokine (interferon-γ) in chitosan (Ch)/poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a biocompatible cationic polysaccharide extensively studied and γ-PGA is a biodegradable, hydrophilic and negatively charged poly-amino acid. These components interact electrostatically, due to opposite charges, resulting in self-assembled structures that can be designed to deliver active molecules such as drugs and proteins. Ch and γ-PGA were self-assembled into polyelectrolyte multilayer films (PEMs) of 371nm thickness, using the layer-by-layer method. Interferon-γ (IFN-γ) was incorporated within the Ch layers at 100 and 500ng/mL. Ch/γ-PGA PEMs with IFN-γ were able to modulate the phenotype of IL-10-treated macrophages at the cell cytoskeleton and cytokine profile levels, inducing an increase of IL-6 and a decrease of IL-10 production. More interestingly, the pro-invasive role of IL-10-treated macrophages was hindered, as their stimulation of gastric cancer cell invasion in vitro decreased from 4 to 2-fold, upon modulation by Ch/γ-PGA PEMs with IFN-γ. This is the first report proposing Ch/γ-PGA PEMs as a suitable strategy to incorporate and release bioactive IFN-γ with the aim of modulating macrophage phenotype, counteracting their stimulating role on gastric cancer cell invasion.


Subject(s)
Chitosan/chemistry , Interferon-gamma/administration & dosage , Macrophages/immunology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Polyglutamic Acid/analogs & derivatives , Cell Line , Cells, Cultured , Cytokines/immunology , Electrolytes , Humans , Macrophages/drug effects , Neoplasm Invasiveness , Neoplasms, Experimental/drug therapy , Polyglutamic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...