Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37028018

ABSTRACT

Getting prompt insights about health and well-being in a non-invasive way is one of the most popular features available on wearable devices. Among all vital signs available, heart rate (HR) monitoring is one of the most important since other measurements are based on it. Real-time HR estimation in wearables mostly relies on photoplethysmography (PPG), which is a fair technique to handle such a task. However, PPG is vulnerable to motion artifacts (MA). As a consequence, the HR estimated from PPG signals is strongly affected during physical exercises. Different approaches have been proposed to deal with this problem, however, they struggle to handle exercises with strong movements, such as a running session. In this paper, we present a new method for HR estimation in wearables that uses an accelerometer signal and user demographics to support the HR prediction when the PPG signal is affected by motion artifacts. This algorithm requires a tiny memory allocation and allows on-device personalization since the model parameters are finetuned in real time during workout executions. Also, the model may predict HR for a few minutes without using a PPG, which represents a useful contribution to an HR estimation pipeline. We evaluate our model on five different exercise datasets - performed on treadmills and in outdoor environments - and the results show that our method can improve the coverage of a PPG-based HR estimator while keeping a similar error performance, which is particularly useful to improve user experience.

2.
Diab Vasc Dis Res ; 19(1): 14791641221085269, 2022.
Article in English | MEDLINE | ID: mdl-35343275

ABSTRACT

Advanced glycation end products (AGEs) are independently related to cardiovascular disease (CVD) and favor cholesterol and oxysterol accumulation in macrophage foam cells. Soluble RAGE (sRAGE) impairs cellular AGE signaling alleviating the deleterious effects of AGE in atherogenesis. The association between plasma AGEs and sRAGE with the content of cholesterol, markers of cholesterol synthesis and absorption, and oxysterols in atherosclerotic plaques was evaluated in subjects undergoing carotid endarterectomy.Plasma and carotid plaques were obtained from symptomatic (n = 23) and asymptomatic subjects (n = 40). Lipids from plaques were extracted and sterols (oxysterols, cholesterol, desmosterol, lathosterol, sitosterol, and campesterol) were determined by using gas chromatography/mass spectrometry. Plasma total AGEs and pentosidine were measured by using fluorimetry and sRAGE by using ELISA.In symptomatic subjects´ atherosclerotic plaques, an increased amount of cholesterol (3x) and oxysterols [7 α-hydroxycholesterol (1.4x); 7 ß-hydroxycholesterol (1.2x); 25-hydroxycholesterol (1.3x); 24-hydroxycholesterol (2.7x), and 27-hydroxycholesterol, (1.15x)], with exception to 7 ketocholesterol, were found in comparison to asymptomatic individuals. Plasma total AGEs and pentosidine significantly and positively correlated to sterols accumulated in the atherosclerotic lesion, including cholesterol, desmosterol, campesterol, sitosterol, and oxysterols. On the other hand, sRAGE inversely correlated to total AGEs and pentosidine in plasma, and with major species of oxysterols, cholesterol, and markers of cholesterol synthesis and absorption in the atherosclerotic lesion. In multiple regression analyses, it was observed a significant inverse correlation between sRAGE and 24-hydroxycholesterol and desmosterol, and a positive significant correlation between pentosidine and 24-hydroxycholesterol, 27-hydroxycholesterol, and campesterol.In conclusion, the plasma concentration of AGEs and sRAGE is a tool to predict the accumulation of sterols in atherosclerotic lesions in symptomatic and asymptomatic individuals, helping to prevent and improve the management of acute cardiovascular complications.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Glycation End Products, Advanced , Humans , Receptor for Advanced Glycation End Products , Sterols
3.
Front Physiol ; 9: 502, 2018.
Article in English | MEDLINE | ID: mdl-29867549

ABSTRACT

Aerobic exercise training (AET) improves the reverse cholesterol transport (RCT) in cholesteryl ester transfer protein-transgenic (CETP-tg) mice. We aimed at investigating the role of AET in the expression of genes and proteins involved in lipid flux in the aorta and macrophages of CETP-tg mice. Three-month-old male mice were randomly divided into trained (T; treadmill 15 m/min; 30 min/day) and sedentary (S) groups. After 6 weeks, peritoneal macrophages and the aortic arch were obtained immediately (0 h) or 48 h after the last exercise session. mRNA was determined by RT-qPCR, protein levels by immunoblot and 14C-cholesterol efflux determined in macrophages. AET did not change body weight, plasma cholesterol, triglycerides, glucose and CETP activity. In macrophages, at time 0 h, a higher expression of genes that encode PPAR gamma, ABCA-1 and a lower expression of MCP-1 and IL-10, was observed in T as compared to S. After 48 h, lower expressions of MCP-1 and PPAR gamma genes were observed in T mice. Increase in ABCA-1, SR-BI and IL-6 and decrease of LOX-1, MCP-1, TNF and IL-10 gene expression was observed in the aorta of T compared to S mice (0 h) and LOX-1 and MCP-1 remained diminished after 48 h. The protein level of MCP-1 and SR-BI in the aortic arch was unchanged in T animals after 48 h as compared to S, but LOX-1 was reduced confirming data of gene expression. The apo A-I and the HDL2 mediated-cholesterol efflux (8 and 24 h) were not different between T and S animals. In the presence of CETP, AET positively influences gene expression in the arterial wall and macrophages of CETP-tg mice contributing to the RCT and prevention of atherosclerosis. These changes were perceptible immediately after the exercise session and were influenced by the presence of CETP although independent of changes in its activity. Reductions in gene and protein expression of LOX-1 were parallel and reflect the ability of exercise training in reducing the uptake of modified LDL by the arterial wall macrophages.

4.
Front Physiol ; 8: 723, 2017.
Article in English | MEDLINE | ID: mdl-29018354

ABSTRACT

Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM.

5.
Front Physiol ; 8: 644, 2017.
Article in English | MEDLINE | ID: mdl-28928671

ABSTRACT

Background: Oxysterols are bioactive lipids that control cellular cholesterol synthesis, uptake, and exportation besides mediating inflammation and cytotoxicity that modulate the development of atherosclerosis. Aerobic exercise training (AET) prevents and regresses atherosclerosis by the improvement of lipid metabolism, reverse cholesterol transport (RCT) and antioxidant defenses in the arterial wall. We investigated in dyslipidemic mice the role of a 6-week AET program in the content of plasma and aortic arch cholesterol and oxysterols, the expression of genes related to cholesterol flux and the effect of the exercise-mimetic AICAR, an AMPK activator, in macrophage oxysterols concentration. Methods: Sixteen-week old male apo E KO mice fed a chow diet were included in the protocol. Animals were trained in a treadmill running, 15 m/min, 5 days/week, for 60 min (T; n = 29). A control group was kept sedentary (S; n = 32). Plasma lipids and glucose were determined by enzymatic techniques and glucometer, respectively. Cholesterol and oxysterols in aortic arch and macrophages were measured by gas chromatography/mass spectrometry. The expression of genes involved in lipid metabolism was determined by RT-qPCR. The effect of AMPK in oxysterols metabolism was determined in J774 macrophages treated with 0.25 mM AICAR. Results: Body weight and plasma TC, TG, HDL-c, glucose, and oxysterols were similar between groups. As compared to S group, AET enhanced 7ß-hydroxycholesterol (70%) and reduced cholesterol (32%) in aorta. In addition, exercise increased Cyp27a1 (54%), Cd36 (75%), Cat (70%), Prkaa1 (40%), and Prkaa2 (51%) mRNA. In macrophages, the activation of AMPK followed by incubation with HDL2 increased Abca1 (52%) and Cd36 (220%) and decrease Prkaa1 (19%), Cyp27a1 (47%) and 7α-hydroxycholesterol level. Conclusion: AET increases 7ß-hydroxycholesterol in the aortic arch of dyslipidemic mice, which is related to the enhanced expression of Cd36. In addition, the increase and reduction of Cyp27a1 and Cyp7b1 in trained mice may contribute to enhance levels of 27-OH C. Both oxysterols may act as an alternative pathway for the RCT contributing to the reduction of cholesterol in the aortic arch preventing atherogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...