Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Photochem Photobiol Sci ; 22(11): 2607-2620, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755667

ABSTRACT

The COVID-19 pandemic exposes our vulnerability to viruses that acquire the ability to infect our cells. Classical disinfection methods are limited by toxicity. Existing medicines performed poorly against SARS-CoV-2 because of their specificity to targets in different organisms. We address the challenge of mitigating known and prospective viral infections with a new photosensitizer for antimicrobial photodynamic therapy (aPDT). Photodynamic inactivation is based on local oxidative stress, which is particularly damaging to enveloped viruses. We synthesized a cationic imidazolyl chlorin that reduced by > 99.999% of the percentage inhibition of amplification of SARS-CoV-2 collected from patients at 0.2 µM concentration and 4 J cm-2. Similar results were obtained in the prevention of infection of human ACE2-expressing HEK293T cells by a pseudotyped lentiviral vector exhibiting the S protein of SARS-CoV-2 at its surface. No toxicity to human epidermal keratinocytes (HaCaT) cells was found under similar conditions. aPDT with this chlorin offers fast and safe broad-spectrum photodisinfection and can be repeated with low risk of resistance.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Humans , Photosensitizing Agents/chemistry , Disinfection , Pandemics , HEK293 Cells , Prospective Studies , Photochemotherapy/methods , SARS-CoV-2 , Antiviral Agents/pharmacology
2.
Chemistry ; 29(53): e202301442, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37606898

ABSTRACT

A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.

3.
Nanoscale Adv ; 5(16): 4191-4202, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37560435

ABSTRACT

Materials that convert the energy of a laser pulse into heat can generate a photoacoustic wave through thermoelastic expansion with characteristics suitable for improved sensing, imaging, or biological membrane permeation. The present work involves the production and characterization of materials composed of an ultrathin layer of titanium dioxide (<5 µm), where a strong absorber molecule capable of very efficiently converting light into heat (5,10,15,20-tetrakis(4-sulfonylphenyl)porphyrin manganese(iii) acetate) is adsorbed. The influence of the thickness of the TiO2 layer and the duration of the laser pulse on the generation of photoacoustic waves was studied. Strong absorption in a thin layer enables bandwidths of ∼130 MHz at -6 dB with nanosecond pulse laser excitation. Bandwidths of ∼150 MHz at -6 dB were measured with picosecond pulse laser excitation. Absolute pressures reaching 0.9 MPa under very low energy fluences of 10 mJ cm-2 enabled steep stress gradients of 0.19 MPa ns-1. A wide bandwidth is achieved and upper high-frequency limits of ∼170 MHz (at -6 dB) are reached by combining short laser pulses and ultrathin absorbing layers.

4.
Chempluschem ; 87(11): e202200228, 2022 11.
Article in English | MEDLINE | ID: mdl-36351700

ABSTRACT

The combination of photodynamic therapy with antibiotics or antimicrobial peptides for inactivation of bacteria is an area of growing interest due to the synergistic effect already observed by many authors. It has been shown that the efficiency of this dual antimicrobial therapy is highly dependent on the structure of the photosensitizer, being tetrapyrrolic macrocycles the ones with most promising results. There are a few review articles in the recent literature describing the main microbiological results concerning this dual inactivation of bacteria, but none of them focus on the synthetic processes of these photosensitizers and their remarkable chemical versatility. Therefore, herein we present an overview on synthetic methodologies for preparation of tetrapyrrolic macrocycles and their conjugates with antibiotics or antimicrobial peptides, for use in dual inactivation of bacteria. This review will be divided in two sections concerning the physical or covalent combinations of PS with antibiotic/cationic peptides, followed by brief critical analysis on their corresponding antimicrobial outcomes.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
5.
Nucl Med Biol ; 114-115: 6-17, 2022.
Article in English | MEDLINE | ID: mdl-36088876

ABSTRACT

BACKGROUND: Manganese porphyrins have several therapeutic/imaging applications, including their use as radioprotectants (in clinical trials) and as paramagnetic MRI contrast agents. The affinity of porphyrins for lipid bilayers also makes them candidates for cell/liposome labelling. We hypothesised that metalation with the positron emission tomography (PET) radionuclide 52Mn (t1/2 = 5.6 d) would allow long-term in vivo biodistribution studies of Mn-porphyrins, as well as a method to label and track cells/liposomes, but methods for fast and efficient radiolabelling are lacking. RESULTS: Several porphyrins were produced and radiolabelled by addition to neutralised [52Mn]MnCl2 and heating using a microwave (MW) synthesiser, and compared with non-MW heating. MW radiosynthesis allowed >95 % radiochemical yields (RCY) in just 1 h. Conversely, non-MW heating at 70 °C for 1 h resulted in low RCY (0-25 % RCY) and most porphyrins did not reach radiolabelling completion after 24 h. Formation of the 52Mn-complexes were confirmed with radio-HPLC by comparison with their non-radioactive 55Mn counterparts. Following this, several [52Mn]Mn-porphyrins were used to radiolabel liposomes resulting in 75-86 % labelling efficiency (LE). Two lead [52Mn]Mn-porphyrins were taken forward to label MDA-MB-231 cancer cells in vitro, achieving ca. 11 % LE. After 24 h, 32-45 % of the [52Mn]Mn-porphyrins was retained in cells. CONCLUSIONS: In contrast to standard methods, MW heating allows the fast synthesis of [52Mn]Mn-porphyrins with >95 % radiochemical yields that avoid purification. [52Mn]Mn-porphyrins also show promising cell/liposome labelling properties. Our reported technique can potentially be exploited for the in vivo imaging of Mn-porphyrin therapeutics, as well as for the accurate in vivo quantification of Mn-porphyrin MRI agents.


Subject(s)
Liposomes , Porphyrins , Microwaves , Tissue Distribution , Radioisotopes , Radiopharmaceuticals
6.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316355

ABSTRACT

A class of amphiphilic photosensitizers for photodynamic therapy (PDT) was developed. Sulfonate esters of modified porphyrins bearing-F substituents in the ortho positions of the phenyl rings have adequate properties for PDT, including absorption in the red, increased cellular uptake, favorable intracellular localization, low cytotoxicity, and high phototoxicity against A549 (human lung adenocarcinoma) and CT26 (murine colon carcinoma) cells. Moreover, the role of type I and type II photochemical processes was assessed by fluorescent probes specific for various reactive oxygen species (ROS). The photodynamic effect is improved not only by enhanced cellular uptake but also by the high generation of both singlet oxygen and oxygen-centered radicals. All of the presented results support the idea that the rational design of photosensitizers for PDT can be further improved by better understanding the determinants affecting its therapeutic efficiency and explain how smart structural modifications can make them suitable photosensitizers for application in PDT.


Subject(s)
Photosensitizing Agents/chemistry , Porphyrins/chemistry , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Fluorescent Dyes/chemistry , Halogenation , Humans , Light , Mice , Microscopy, Confocal , Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/metabolism , Porphyrins/pharmacology , Porphyrins/therapeutic use , Reactive Oxygen Species/chemistry , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
7.
Dalton Trans ; 48(10): 3249-3262, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30776044

ABSTRACT

For the development of redox responsive MRI probes based on the MnIII/MnII couple, stable complexation of both reduced and oxidized forms of the metal ion and appropriate tuning of the redox potential in the biologically relevant range are key elements. The water soluble fluorinated Mn-porphyrin derivative Mn-3 satisfies both requirements. In aqueous solutions, it can reversibly switch between MnIII/MnII oxidation states. In the presence of ascorbic acid or ß-mercaptoethanol, the MnIII form undergoes reduction, which is slowly but fully reversed in the presence of air oxygen. A UV-Vis kinetic study of MnIII/MnII reduction under oxygen-free conditions yielded second-order rate constants, k2, of 46.1 M-1 s-1 and 13.8 M-1 s-1 for the reaction with ascorbic acid and ß-mercaptoethanol, respectively. This could correspond, in the absence of oxygen, to a half-life of a few minutes in blood plasma and a few seconds in circulating immune cells where ascorbic acid reaches 20-40 µM and a few mM concentrations, respectively. In contrast to expectations based on the redox potential, reduction with glutathione or cysteine does not occur. It is prevented by the coordination of the glutathione carboxylate group(s) to MnIII in the axial position, as was evidenced by NMR data. Therefore, MnIII-3 acts as an ascorbate specific turn-on MRI probe, which in turn can be re-oxidized by oxygen. The relaxivity increase from the oxidized to the reduced form is considerably improved at medium frequencies (up to 80 MHz) with respect to the previously studied Mn-TPPS4 analogues; at 20 MHz, it amounts to 150%. No in vitro cytotoxicity is detectable for Mn-3 in the typical MRI concentration range. Finally, 19F NMR resonances of MnIII-3 are relatively sharp which could open further opportunities to exploit such complexes as paramagnetic 19F NMR probes.

8.
Molecules ; 24(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586854

ABSTRACT

In the present study, we developed a green epoxidation approach for the synthesis of the diastereomers of (-)-isopulegol benzyl ether epoxide using molecular oxygen as the oxidant and a hybrid manganese(III)-porphyrin magnetic reusable nanocomposite as the catalyst. High activity, selectivity, and stability were obtained, with up to four recycling cycles without the loss of activity and selectivity for epoxide. The anticancer effect of the newly synthesized isopulegol epoxide diastereomers was evaluated on a human osteosarcoma cell line (MG-63); both diastereomers showed similar in vitro potency. The measured IC50 values were significantly lower than those reported for other monoterpene analogues, rendering these epoxide isomers as promising anti-tumor agents against low prognosis osteosarcoma.


Subject(s)
Antineoplastic Agents/pharmacology , Biomimetics , Magnetic Phenomena , Metalloporphyrins/chemistry , Nanocomposites/chemistry , Osteosarcoma/pathology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calorimetry, Differential Scanning , Catalysis , Cell Line, Tumor , Cyclohexane Monoterpenes , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Humans , Manganese/chemistry , Nanocomposites/ultrastructure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Terpenes/chemical synthesis , Terpenes/chemistry , Terpenes/pharmacology , Thermogravimetry
9.
Molecules ; 22(5)2017 May 05.
Article in English | MEDLINE | ID: mdl-28475140

ABSTRACT

Herein we report the synthesis of unsymmetrical meso-aryl substituted porphyrins, using NaY zeolite as an inorganic acid catalyst. A comparative study between this method and the several synthetic strategies available in the literature was carried out. Our method presented a better, more cost-efficient rationale and displayed a significantly lower environmental impact. Furthermore, it was possible to verify the scalability of the process as well as the reutilization of the inorganic catalyst NaY (up to 6 times) without significant yield decrease. In addition, this method was applied to the synthesis of several other unsymmetrical porphyrins, from a low melting point porphyrin to mono-carboxylated halogenated unsymmetrical porphyrins, in yields higher than those found in the literature. Additionally, for the first time, two acetamide functionalized halogenated porphyrins were prepared in high yields. This methodology opens the way to the preparation of high yielding functionalized porphyrins, which can be easily immobilized for a variety of applications, either in catalysis or in biomedicine.


Subject(s)
Cost-Benefit Analysis , Porphyrins/chemical synthesis , Sodium/chemistry , Yttrium/chemistry , Zeolites/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Catalysis , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Dalton Trans ; 45(41): 16211-16220, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27722477

ABSTRACT

Herein, the synthesis and characterisation of magnetic iron oxide-porphyrin hybrids, constituted of iron-oxide magnetic nanoparticles covalently linked to an unsymmetrically substituted meso-aryl porphyrin, are described. The methodology features for the preparation of the key unsymmetrically substituted meso-aryl porphyrin synthons are discussed, with emphasis on sustainability and in economical terms. The "NaY method" herein reported allows large scale and economical preparation, which are demonstrated by its reusability and at least two-fold yields, when compared with classical porphyrin synthetic methods and also presents a much better cost-efficiency rationale and lower environmental impact. Upon covalent linking to iron-oxide magnetic nanoparticles, the new hybrids are fully characterised by thermogravimetry/differential scanning calorimetry, transmission electron microscopy and infrared spectroscopy and their photophysical properties were measured, which demonstrate that the presence of the magnetic nanoparticle counterparts does not affect these properties, thus allowing the materials to keep the photophysical features imparted by their porphyrin counterparts.

11.
J Med Chem ; 59(10): 4688-96, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27070884

ABSTRACT

Diamagnetic metal complexes of phthalocyanines with n-butoxyl groups in all the α-benzo positions of the macrocycle skeleton, MPc(OBu)8, have strong near-infrared absorptions and intense fluorescences that are Stokes shifted by more than 15 nm. Interestingly, the silicon complex 6 is also remarkably photostable and nontoxic. The use of 6 in the fluorescence imaging of BALB/c mice bearing a 4T1-luc2 tumor in the mammary fat pad unambiguously revealed the presence of the tumor when it was only 1 mm in diameter and was not visible with the naked eye. Compound 6 has an intrinsic ability to accumulate in the tumor, adequate spectroscopic properties, and excellent stability to function as a NIR fluorescent label in the early detection of tumors.


Subject(s)
Fluorescence , Indoles/chemistry , Mammary Neoplasms, Animal/diagnostic imaging , Optical Imaging , Organometallic Compounds/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Isoindoles , Mice , Mice, Inbred BALB C , Molecular Structure , Organometallic Compounds/chemical synthesis , Structure-Activity Relationship
12.
J Inorg Biochem ; 154: 50-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26583704

ABSTRACT

Water soluble phthalocyanines bearing either four PEG500 or four choline substituents in the macrocyclic structure, as well as their Zn(II) and Mn(III) complexes were synthesized. The metal-free and Zn(II) complexes present relatively high fluorescence quantum yields (up to 0.30), while the Mn(III) complexes show no fluorescence as a consequence of rapid non-radiative deactivation of the Mn(III) phthalocyanine excited states through low-lying metal based or charge-transfer states. The effect of DMSO on the aggregation of the phthalocyanines was studied. It was not possible to obtain the Mn(II) complexes by reduction of the corresponding Mn(III) complexes due to the presence of electron donating substituents at the periphery of the phthalocyanines. The (1)H NMRD plots of the PEG500 and choline substituted Mn(III)-phthalocyanine complexes are typical of self-aggregated Mn(III) systems with r1 relaxivities of 4.0 and 5.7mM(-1)s(-1) at 20MHz and 25°C. The Mn(III)-phthalocyanine-PEG4 complex shows no significant cytotoxicity to HeLa cell cultures after 2h of incubation up to 2mM concentration. After 24h of cell exposure to the compound, significant toxicity was observed for all the concentrations tested with IC50 of 1.105mM.


Subject(s)
Choline/analogs & derivatives , Choline/chemical synthesis , Indoles/chemical synthesis , Polyethylene Glycols/chemical synthesis , Cell Survival/drug effects , Choline/toxicity , HeLa Cells , Humans , Indoles/toxicity , Inhibitory Concentration 50 , Isoindoles , Molecular Imaging , Polyethylene Glycols/toxicity
13.
ChemSusChem ; 7(10): 2821-4, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25111181

ABSTRACT

Water, under microwave irradiation and at a temperature of 473 K, reaches pressures above 16 bar, being capable to act as catalyst, without the use of organic solvents and oxidants, for meso-substituted porphyrin synthesis. Sustainability of the reaction is proved by E Factor=35 and EcoScale value of 50.5, the highest so far obtained for porphyrin synthesis. Methodology's wide versatility is clearly demonstrated by the good yields obtained for both aryl and alkyl substituted porphyrins. These reaction conditions represent a huge development, not only by using very high concentrations, minimizing organic solvent usage, but also by eradicating toxic expensive solvents and oxidants.


Subject(s)
Aldehydes/chemistry , Porphyrins/chemical synthesis , Pyrroles/chemistry , Water/chemistry , Catalysis , Green Chemistry Technology/methods , Magnetic Resonance Spectroscopy , Microwaves
14.
SELECTION OF CITATIONS
SEARCH DETAIL
...