Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(24): eabn2706, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35704590

ABSTRACT

The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses suggest that T. brucei lncRNAs modulate parasite-host interactions and provide a mechanism by which grumpy regulates cell differentiation in trypanosomes.

2.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31028144

ABSTRACT

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Subject(s)
Intraepithelial Lymphocytes/physiology , Liver/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/pathogenicity , Sporozoites/pathogenicity , Animals , Liver/parasitology , Male , Mice , Mice, Inbred C57BL , Sporozoites/growth & development
3.
Nat Microbiol ; 2: 17032, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28288095

ABSTRACT

The Earth's rotation forced life to evolve under cyclic day and night environmental changes. To anticipate such daily cycles, prokaryote and eukaryote free-living organisms evolved intrinsic clocks that regulate physiological and behavioural processes. Daily rhythms have been observed in organisms living within hosts, such as parasites. Whether parasites have intrinsic molecular clocks or whether they simply respond to host rhythmic physiological cues remains unknown. Here, we show that Trypanosoma brucei, the causative agent of human sleeping sickness, has an intrinsic circadian clock that regulates its metabolism in two different stages of the life cycle. We found that, in vitro, ∼10% of genes in T. brucei are expressed with a circadian rhythm. The maximum expression of these genes occurs at two different phases of the day and may depend on a post-transcriptional mechanism. Circadian genes are enriched in cellular metabolic pathways and coincide with two peaks of intracellular adenosine triphosphate concentration. Moreover, daily changes in the parasite population lead to differences in suramin sensitivity, a drug commonly used to treat this infection. These results demonstrate that parasites have an intrinsic circadian clock that is independent of the host, and which regulates parasite biology throughout the day.


Subject(s)
Circadian Rhythm , Gene Expression Regulation , Metabolism , Trypanosoma brucei brucei/physiology , Adenosine Triphosphate/analysis , Gene Expression Profiling , Parasitic Sensitivity Tests , Suramin/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/drug effects
4.
Cell Host Microbe ; 19(6): 837-48, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27237364

ABSTRACT

Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid ß-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenous myristate and form ß-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. These findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.


Subject(s)
Adipose Tissue/parasitology , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Adipose Tissue/pathology , Animals , Base Sequence , Disease Models, Animal , Life Cycle Stages , Male , Mice , Mice, Inbred C57BL , Myristic Acid/metabolism , Oxidation-Reduction , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Transcriptome , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/blood , Trypanosomiasis, African/pathology
5.
Mol Microbiol ; 93(4): 645-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24946224

ABSTRACT

Trypanosoma brucei is a unicellular parasite that causes sleeping sickness in humans. Most of its transcription is constitutive and driven by RNA polymerase II. RNA polymerase I (Pol I) transcribes not only ribosomal RNA genes, but also protein-encoding genes, including variant surface glycoproteins (VSGs) and procyclins. In T. brucei, histone H1 (H1) is required for VSG silencing and chromatin condensation. However, whether H1 has a genome-wide role in transcription is unknown. Here, using RNA sequencing we show that H1 depletion changes the expression of a specific cohort of genes. Interestingly, the predominant effect is partial loss of silencing of Pol I loci, such as VSG and procyclin genes. Labelling of nascent transcripts with 4-thiouridine showed that H1 depletion does not alter the level of labelled Pol II transcripts. In contrast, the levels of 4sU-labelled Pol I transcripts were increased by two- to sixfold, suggesting that H1 preferentially blocks transcription at Pol I loci. Finally, we observed that parasites depleted of H1 grow almost normally in culture but they have a reduced fitness in mice, suggesting that H1 is important for host-pathogen interactions.


Subject(s)
Gene Expression Regulation , Histones/metabolism , RNA Polymerase I/antagonists & inhibitors , Transcription, Genetic , Trypanosoma brucei brucei/physiology , Animals , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions , Mice , Regulon , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...