Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 394: 110168, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36931145

ABSTRACT

Foods of animal origin are increasingly considered a source of extended spectrum ß-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried blaCTX-M and blaTEM genes, one (5.2 %) blaSHV and blaTEM genes, one isolate (5.2 %) carried blaCTX-M and one (5.2 %) blaSHV alone. The majority of CTX-M-positive E. coli isolates carried the blaCTX-M-15 gene (13 isolates), being the blaCTX-M-9, blaCTX-M-2, and blaCTX-M-8 (one isolate each) also detected. Two SHV-positive isolates presented the blaSHV-5 and blaSHV-12 allele. The isolate identified as E. fergusonii was positive for blaCTX-M-65 gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Animals , Escherichia coli , Colistin , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Colombia , Phylogeny , Multilocus Sequence Typing , Chickens/microbiology , beta-Lactamases/genetics , Meat/microbiology , Escherichia coli Proteins/genetics , Plasmids
2.
Antibiotics (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978377

ABSTRACT

The genus Aeromonas has received constant attention in different areas, from aquaculture and veterinary medicine to food safety, where more and more frequent isolates are occurring with increased resistance to antibiotics. The present paper studied the interaction of Aeromonas strains isolated from fresh produce and water with different eukaryotic cell types with the aim of better understanding the cytotoxic capacity of these strains. To study host-cell pathogen interactions in Aeromonas, we used HT-29, Vero, J774A.1, and primary mouse embryonic fibroblasts. These interactions were analyzed by confocal microscopy to determine the cytotoxicity of the strains. We also used Galleria mellonella larvae to test their pathogenicity in this experimental model. Our results demonstrated that two strains showed high cytotoxicity in epithelial cells, fibroblasts, and macrophages. Furthermore, these strains showed high virulence using the G. mellonella model. All strains used in this paper generally showed low levels of resistance to the different families of the antibiotics being tested. These results indicated that some strains of Aeromonas present in vegetables and water pose a potential health hazard, displaying very high in vitro and in vivo virulence. This pathogenic potential, and some recent concerning findings on antimicrobial resistance in Aeromonas, encourage further efforts in examining the precise significance of Aeromonas strains isolated from foods for human consumption.

3.
Foods ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34828891

ABSTRACT

Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum ß-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.

SELECTION OF CITATIONS
SEARCH DETAIL
...