Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 95(2): 221, 2011 Feb.
Article in English | MEDLINE | ID: mdl-30743434

ABSTRACT

During the conducting of Phytophthora ramorum surveys at Galician public parks (northwestern Spain) in 2010, established Rhododendron spp. plants were observed to be exhibiting leaf spots and necrosis, shoot blight, and cankers and dieback of shoots and branches. Branches and leaves of affected rhododendrons contained pseudothecia with bitunicate asci and hyaline pseudoparaphyses, and pycnidia were observed within the same stromatic masses. Symptomatic samples were disinfested in 0.5% sodium hypochlorite for 3 min. Tissues were cut from the margin of lesions, placed onto malt extract agar amended with streptomycin (25 µg ml-1), and incubated at 25°C in the dark. Cultures displaying morphological characteristics associated with Botryosphaeriaceae species were subcultured on 2% water agar with sterilized Pinus pinaster needles as a substrate and incubated at 25°C under near-UV light to encourage pycnidial production (1). Single conidial cultures gave rise to two distinct colonies on potato dextrose agar (PDA) at 25°C. In type 1, isolates produced a sparse, aerial mycelium and a characteristic yellow pigment that was more intense after 3 days, thereafter becoming violaceous and gradually turning dark gray. Growth occurred in the range of 4 to 38°C with an optimum at 29°C. Conidia were hyaline, fusiform, aseptate, thin walled, and averaged 21.1 (14.3 to 25.0) × 5.7 (4.3 to 6.8) µm with a length/width (L/W) ratio of 3.7 ± 0.4 (n = 100). On the basis of these characteristics, isolates were identified as Neofusicoccum luteum (1,3). Colonies of type 2 produced a dense, white-to-yellowish mycelium that rapidly became gray followed by marked diurnal zonation. Mycelial growth occurred in the range of 6 to 38°C with an optimum at 29 to 30°C. Conidia were hyaline, elliptical or fusiform, aseptate, thin walled, and averaging 18.3 (14.1 to 20.7) × 5.8 (4.6 to 7.0) µm with a L/W ratio of 3.2 ± 0.4 (n = 100). These isolates were identified as N. parvum (1,2). Identity was confirmed by DNA sequences analysis of internal transcribed spacer (ITS) regions. Comparison of the sequences of type 1 and 2 showed 100% homology with N. luteum and N. parvum (GenBank Accession Nos. EU673311 and GU251146, respectively). Representative sequences were deposited at GenBank (Accession Nos. HQ197352 and HQ197351). Pathogenicity of each isolate of N. luteum and N. parvum was confirmed by inoculating four 3-year-old Rhododendron spp. seedlings grown in pots. Shallow cuts were made in three branches of each plant. A colonized 6-mm agar plug, removed from the margin of an actively growing colony, was inserted beneath the flap and sealed with Parafilm. Four control seedlings received only sterile PDA agar plugs. Plants were maintained at 26°C and 70% humidity for 21 days. Inoculated plants began showing symptoms after 3 days. Necrosis progressed quickly and bidirectionally from the wound, resulting in death of leaves and wilting of shoots. N. luteum and N. parvum were reisolated from all inoculated plants but not from the controls. To our knowledge, this is the first report of N. luteum and N. parvum on Rhododendron spp. in Spain. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) S. R. Pennycook et al. Mycotaxon 24:445, 1985. (3) A .J. L. Phillips et al. Sydowia 54:59, 2002.

2.
Plant Dis ; 94(2): 273, 2010 Feb.
Article in English | MEDLINE | ID: mdl-30754290

ABSTRACT

Phytophthora alni, a soil- and waterborne pathogen, causes aggressive root and collar rot on riparian alder populations (1,2,4). The disease has been described from several European countries with a destructive impact in Great Britain (1,2). All European alder species and the red alder (Alnus rubra) are highly susceptible. P. alni has multiple variants that have been placed in three subspecies: P. alni subsp. alni, P. alni subsp. uniformis, and P. alni subsp. multiformis (1). In July 2009, a survey of symptoms of Phytophthora rot from A. glutinosa at 20 riparian stands along the Avia River in Galicia (northwest Spain) was conducted. Affected trees showed symptoms of Phytophthora rot including abnormally small, sparse, and yellowish foliage, dieback in the canopy, necroses of the inner bark and cambium, and bleeding cankers on the trunks (2,4). Phytophthora spp. were baited from saturated rhizosphere soil and watercourses using oak leaflets (4). Roots and tissue from fresh active inner bark lesions were transferred to selective medium V8-PARPH agar (4) and incubated for 7 days at 22°C in the dark. A Phytophthora sp. was isolated, transferred to carrot agar (CA), and incubated in the dark. Colonies were appressed, often irregular in outline, and with limited aerial mycelium (1). Growth on CA occurred from 4 to 31°C with optimum growth at 23 to 25°C. Chlamydospores were not observed. Ellipsoid, nonpapillate, noncaducous sporangia had a length/breadth average ratio of 1.4. Nesting and extended internal proliferation occurred. Oogonia, antheridia, and oospores were abundantly produced in a single culture. Oogonia with tapered stalks were spherical (mature oogonia 38 to 50 µm in diameter) and some had ornamented walls or bullate protuberances (1,2). Antheridia were large, amphigynous, and predominantly two-celled (23 to 37 × 16 to 23 µm). Oospores were plerotic. Distorted comma-shaped or smaller oogonia and aborted oospores were observed (1). Amplification of DNA was accomplished by using sequence-characterized amplification region-PCR primers (3). The amplicon sizes obtained were identical to P. alni subsp. alni (3). Internal transcribed spacer (ITS)-DNA and nadh1 mitochondrial gene were also amplified. DNA sequences of ITS and mt-DNA regions were deposited in GenBank (Nos. GU108602 and GU108603). Comparison of the sequences showed 100% homology with P. alni subsp. alni (GenBank Nos. FJ746679 and DQ202490). P. alni subsp. alni was recovered from trees at 3 of 20 riparian alder stands with symptoms. Pathogenicity of one representative isolate was confirmed by inoculating 10 3-year-old A. glutinosa seedlings grown in pots. One shallow cut was made into the bark at the collar level. A colonized agar plug, from the margin of an actively growing colony of P. alni subsp. alni, was inserted beneath the flap that was sealed with Parafilm. Five controls seedlings received only sterile CA agar plugs. Plants were incubated at 24°C and 95% humidity for 30 days. On inoculated plants, necroses progressed bidirectionally from the wound, and dead leaves and wilting of shoots were observed. P. alni subsp. alni was recovered from inoculated seedlings, but not from controls. To our knowledge, this is the first report of Phytophthora rot on alder caused by P. alni subsp. alni in Spain. References: (1) C. M. Brasier et al. Mycol. Res. 108:1172, 2004. (2) J. Gibbs et al. For. Comm. Bull. 126, 2003 (3) R. Ioos et al. Eur. J. Plant Pathol. 112:323, 2005. (4) T. Jung et al. Plant Pathol. 53:197, 2004.

SELECTION OF CITATIONS
SEARCH DETAIL
...