Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(5): e202301673, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38227427

ABSTRACT

The "on-demand" capture and utilization of CO2 is effectively realized with a readily accessible dual function organic composite. The covalent and controlled derivatization of graphene oxide (GO) surface with naturally occurring arginine led to a "smart" material capable of capturing (chemisorption) CO2 from high-purity flue-gas as well as low-concentration streams (i. e. direct air capture) and concomitant chemical activation toward the incorporation into cyclic carbonates. The overall integrated CO2 capture and conversion (ICCC) strategy has been fully elucidated mechanistically via dedicated computational, spectroscopic and thermal analyses.

2.
Chemistry ; 29(60): e202301854, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37548167

ABSTRACT

We report on the synthesis of ß-cyclodextrin (ßCD) modified graphene oxide (GO) nanosheets, having different sized alkyl linkers (GO-Cn -ßCD) and their exploitation as sorbent of per- and polyfluoroalkyl substances (PFAS) from drinking water. ßCD were functionalized with a pending amino group, and the resulting precursors grafted to GO nanosheets by epoxide ring opening reaction. Loading of ßCD units in the range 12 %-36 % was estimated by combined XPS and elemental analysis. Adsorption tests on perfluorobutanoic acid (PFBA), a particularly persistent PFAS selected as case study, revealed a strong influence of the alkyl linker length on the adsorption efficiency, with the hexyl linker derivative GO-C6 -ßCD outperforming both pristine GO and granular activated carbon (GAC), the standard sorbent benchmark. Molecular dynamic simulations ascribed this evidence to the favorable orientation of the ßCD unit on the surface of GO which enables a strong contaminant molecules retention.

3.
Chemistry ; 29(4): e202202440, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36260641

ABSTRACT

New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.

4.
ACS Org Inorg Au ; 2(3): 229-235, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36855471

ABSTRACT

A series of modular ImPy-carbene-Au(I) complexes are synthesized and fully characterized both in the solid state and in solution. The presence of oligoaryl units (phenyl and thienyl rings) at the C5-position of the ImPy core (in close proximity to the gold center) imprints on the organometallic species fine-tunable and predictable catalytic properties. A marked accelerating effect was recorded in several [Au(I)]-catalyzed electrophilic activations of unsaturated hydrocarbons when a CF3-containing aromatic ring was accommodated at the ImPy core.

SELECTION OF CITATIONS
SEARCH DETAIL
...