Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626769

ABSTRACT

AIMS: The increasingly widespread use of beneficial microbial inocula in agriculture gives rise to two primary needs: i) the assessment of the environmental risk, i.e. their impact on local soil microbiome and soil properties; ii) being able to track them and monitor their persistence and fate to both optimize their formulation and application method. In previous years, PCR-based methods have detected bacterial or fungal bioinoculant at the species or strain level. However, the selective detection, quantification, and monitoring of target microbial species in a complex ecosystem such as soil require that the tests possess high specificity and sensitivity. METHODS AND RESULTS: The work proposes a quantitative real-time PCR detection method using TaqMan chemistry, showing high specificity and sensitivity for the Paenibacillus polymyxa K16 strain. The primer and probe sets were designed using the polymyxin gene cluster targeting pmxC and pmxE sequences. Validation tests showed that these assays allowed a discriminant and specific detection of P. polymyxa K16 in soil. CONCLUSION: The TaqMan-assay developed could thus ensure the necessary level of discrimination required by commercial and regulatory purposes to detect and monitor the bioinoculant in soil.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genetics , Ecosystem , Soil , Real-Time Polymerase Chain Reaction , DNA Primers/genetics , Sensitivity and Specificity , Paenibacillus/genetics
2.
Sci Rep ; 7(1): 13102, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026120

ABSTRACT

The use of entomopathogenic fungi for biocontrol of plant pests is recently receiving an increased interest due to the need of reducing the impact of agricultural practices on the environment. Biocontrol efficacy could be improved by co-inoculation of different microorganisms. However, interactions between the fungal species can trigger or depress the biocontrol activity. Co-inoculation of two entomopathogenic fungi (Beauveria bassiana and B. brongniartii) was performed in vitro to evaluate the effects of their joint behaviour on a range of different carbon sources in comparison to single inoculation. The two species showed a very different metabolic profile by Phenotype MicroArrayTM. B. bassiana showed a broader metabolism than B. brongniartii on a range of substrates. B. brongniartii showed a greater specificity in substrate utilization. Several carbon sources (L-Asparagine, L-Aspartic Acid, L- Glutamic Acid, m- Erythritol, D-Melezitose, D-Sorbitol) triggered the fungal metabolism in the co-inoculum. SSR markers and Real Time qPCR analysis showed that different substrates promoted either the growth of one or the other species, suggesting a form of interaction between the two fungi, related to their different ecological niches. The methodological approach that combines Phenotype MicroArrayTM and SSR genotyping appeared useful to assess the performance and potential competition of co-inoculated entomopathogenic fungi.


Subject(s)
Beauveria/physiology , Pest Control, Biological/methods , Plants/microbiology , Genotype , Phylogeny , Real-Time Polymerase Chain Reaction
3.
Sci Rep ; 6: 22933, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26975931

ABSTRACT

A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.


Subject(s)
Beauveria/genetics , Microsatellite Repeats/genetics , Mycological Typing Techniques/methods , Soil Microbiology , Animals , Beauveria/classification , Beauveria/growth & development , DNA, Fungal/analysis , DNA, Fungal/genetics , Malus/growth & development , Mycelium/genetics , Reproducibility of Results , Rhizosphere , Soil/chemistry , Species Specificity
4.
Int J Food Microbiol ; 189: 1-10, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25108759

ABSTRACT

Buckwheat (Fagopyrum spp.) is a "pseudo-cereal" of great interest in the production of healthy foods since its flour, derived from achenes, is enriched with bioactive compounds and, due to the absence of gluten, may be used in composition of celiac diets. Amongst buckwheat species, F. tataricum achenes possess a larger amount of the antioxidant flavenol rutin than the common buckwheat F. esculentum. Ongoing climate change may favor plant susceptibility to the attack by pathogenic, often mycotoxigenic, fungi with consequent increase of mycotoxins in previously unexploited feeds and foodstuffs. In particular, Aspergillus flavus, under suitable environmental conditions such as those currently occurring in Italy, may produce aflatoxin B1 (AFB1), the most carcinogenic compound of fungal origin which is classified by IARC as Category 1. In this study, the viable achenes of two buckwheat species, F. tataricum (var. Golden) and F. esculentum (var. Aelita) were inoculated with an AFB1-producing A. flavus NRRL 3357 to analyze their relative performances against fungal invasion and toxin contamination. Notably, we sought the existence of a correlation between the amount of tocols/flavonols in the achenes of buckwheat, infected and non-infected with A. flavus, and to analyze the ability of the pathogen to grow and produce toxin during achene infection. Results suggest that achenes of F. tataricum, the best producer of antioxidant compounds in this study, are less susceptible to A. flavus infection and consequently, but not proportionally, to mycotoxin contamination compared with F. esculentum. Moreover, rutin-derived quercetin appears to be more efficient in inhibiting aflatoxin biosynthesis than the parent compound.


Subject(s)
Aflatoxin B1/antagonists & inhibitors , Antioxidants/pharmacology , Aspergillus flavus/drug effects , Fagopyrum/metabolism , Plant Diseases/microbiology , Seeds/metabolism , Aflatoxin B1/biosynthesis , Antioxidants/isolation & purification , Antioxidants/metabolism , Aspergillus flavus/growth & development , Fagopyrum/microbiology , Italy , Plant Extracts/chemistry , Quercetin/biosynthesis , Quercetin/isolation & purification , Quercetin/pharmacology , Rutin/biosynthesis , Rutin/isolation & purification , Rutin/pharmacology , Seeds/microbiology , gamma-Tocopherol/isolation & purification , gamma-Tocopherol/metabolism , gamma-Tocopherol/pharmacology
5.
Anal Bioanal Chem ; 402(4): 1541-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21837468

ABSTRACT

In this work, we applied scanning electron microscopy (SEM), microanalysis and Raman spectroscopy to study the fungi inhabiting a richly illuminated parchment document and the damage induced by their activity. To that aim, we collected samples of fungal mycelium from the deteriorated areas on a removable adhesive tape specifically intended for lifting fungi without damaging the support. SEM analysis of the adhesive tape samples showed the co-occurrence of several species of fungi. One strain closely resembling Acremonium species was observed only in the tape micrographs but no agar cultures were obtained. Its fungal structures showed the production of abundant oxalates with an outstanding leaching of the calcium-based materials of parchment (typically manufactured with gypsum and lime). Needle-like crystals of calcium oxalate produced by the fungus forming a uniform and quite regular grid around conidial slimy heads were documented. As a result, the areas affected by moulds were weakened, stained and characterised by a powdery patina rich in calcium. Confocal µ-Raman confirmed the presence of oxalates while EDS showed the presence of calcium in crystals. We conclude that the defacement of the parchment was due to both collagenolytic activity, and to the biotransformation of calcium-based minerals by fungi.


Subject(s)
Fungi/isolation & purification , Microscopy, Electron, Scanning , Minerals/analysis , Oxalates/analysis , Paper , Spectrum Analysis, Raman , Calcium Oxalate/analysis , Fungi/ultrastructure , History, 20th Century , Italy , Microscopy, Electron, Scanning/methods , Museums , Paper/history , Spectrum Analysis, Raman/methods
6.
Int J Food Microbiol ; 144(1): 64-71, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20869132

ABSTRACT

Fungi can grow on many food commodities. Some fungal species, such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger and Fusarium spp., can produce, under suitable conditions, mycotoxins, secondary metabolites which are toxic for humans and animals. Toxigenic fungi are a real issue, especially for the cereal industry. The aim of this work is to carry out a non destructive, hyperspectral imaging-based method to detect toxigenic fungi on maize kernels, and to discriminate between healthy and diseased kernels. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector- Specim V10, working in the visible-near infrared spectral range (400-1000 nm) was used. The results show that the hyperspectral imaging is able to rapidly discriminate commercial maize kernels infected with toxigenic fungi from uninfected controls when traditional methods are not yet effective: i.e. from 48 h after inoculation with A. niger or A. flavus.


Subject(s)
Aspergillus/isolation & purification , Food Microbiology/methods , Fusarium/isolation & purification , Spectroscopy, Near-Infrared/methods , Zea mays/microbiology , Discriminant Analysis , Food Microbiology/instrumentation , Spectroscopy, Near-Infrared/instrumentation , Zea mays/metabolism
7.
J Colloid Interface Sci ; 306(1): 89-95, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17064725

ABSTRACT

In this paper we report the preparation of an organized mesoporous Pd-Zn/alumina system, by a new surfactant-assisted single-step sol-gel synthesis, performed in alcohol, using stearic acid as a chemical template, aluminum sec-butoxide as Al source and metal stearates both as Pd-Zn sources and as structural directing agents. The prepared materials have been characterized using a variety of techniques such as thermogravimetric analysis, atomic absorption spectroscopy, X-ray powder diffraction and N2 adsorption-desorption, and preliminarily tested in the oxidative steam reforming of methanol (OSRM) in the temperature range 100-400 degrees C.

8.
J Microbiol Methods ; 36(1-2): 21-8, 1999 May.
Article in English | MEDLINE | ID: mdl-10353796

ABSTRACT

In the present study, soil biomass activity, organic carbon storage, and turnover times were compared in adjacent mediterranean biotopes with different forest vegetation, to analyze the effects of litter diversity and soil management protocols on microbial decomposition rates. Samples of forest soil from four vegetation types were collected at depths of 0-20 and 20-40 cm in the 'Tenuta Presidenziale di Castelporziano' Reserve on the Tyrrhenian coast, near Rome (Italy). The samples were incubated under standard laboratory conditions (-33 kPa water tension, and 30 degrees C), in order to compare the microbial activity independently of temperature and humidity. The CO2-C accumulation curves over a 28-d incubation period showed substantially different kinetics between the samples; in particular, soils with above-ground diversity were characterised by high mineralization activity when compared with those sampled under monospecific vegetation. For all the sites, statistically significant linear correlation was observed between nitrogen concentration and potentially mineralizable carbon (r = 0.97), and microbial biomass carbon (Cmic) to total organic carbon (Corg) ratio and the microbial metabolic quotient q(CO2) (r = -0.96). The q(CO2), indicator of the stability of ecosystems, was enhanced by plant diversity, while the Cmic:Corg ratio was reduced.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Soil Microbiology , Trees/microbiology , Biomass , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...