Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766257

ABSTRACT

Antibody-secreting cells (ASCs) are generated following B cell activation and constitutively secrete antibodies. As such, ASCs are key mediators of humoral immunity whether it be in the context of pathogen exposure, vaccination or even homeostatic clearance of cellular debris. Therefore, understanding basic tenants of ASC biology such as their differentiation kinetics following B cell stimulation is of importance. Towards that aim, we developed a mouse model which expresses simian HBEGF (a.k.a., diphtheria toxin receptor (DTR)) under the control of the endogenous Jchain locus (or J-DTR). ASCs from these mice expressed high levels of cell surface DTR and were acutely depleted following diphtheria toxin treatment. Furthermore, proof-of-principle experiments demonstrated the ability to use these mice to track ASC reconstitution following depletion in 3 distinct organs. Overall, J-DTR mice provide a new and highly effective genetic tool allowing for the study of ASC biology in a wide range of potential applications.

2.
STAR Protoc ; 4(2): 102308, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37178113

ABSTRACT

Antibody-secreting cells (ASCs) are critical regulators of the humoral immune response. However, differences between tissue resident populations versus those that have recently migrated to their final anatomic destination are poorly understood. Here, we present a protocol for using retro-orbital (r.o.) CD45 antibody labeling to identify tissue resident versus recently immigrated ASCs in mice. We describe steps for r.o. injection of antibodies, animal euthanasia, and tissue harvesting. We then detail tissue processing, cell counting, and cell staining for flow cytometry analysis. For complete details on the use and execution of this protocol, please refer to Pioli et al. (2023).1.

3.
iScience ; 26(3): 106223, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36890795

ABSTRACT

Antibody-secreting cells (ASCs) are key contributors to humoral immunity through immunoglobulin production and the potential to be long-lived. ASC persistence has been recognized in the autoimmune thymus (THY); however, only recently has this population been appreciated in healthy THY tissue. We showed that the young female THY was skewed toward higher production of ASCs relative to males. However, these differences disappeared with age. In both sexes, THY ASCs included Ki-67+ plasmablasts which required CD154(CD40L) signals for their propagation. Single cell RNA-sequencing revealed that THY ASCs were enriched for an interferon responsive transcriptional signature relative to those from bone marrow and spleen. Flow cytometry confirmed that THY ASCs had increased levels of Toll-like receptor 7 as well as CD69 and major histocompatibility complex class II. Overall, we identified fundamental aspects of THY ASC biology which may be leveraged for future in depth studies of this population in both health and disease.

4.
Antib Ther ; 5(3): 151-163, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35928457

ABSTRACT

Background: Antibody-secreting cells are terminally differentiated B cells that play a critical role in humoral immunity through immunoglobulin secretion along with possessing the potential to be long-lived. It is now appreciated that ASCs regulate multiple aspects of biology through the secretion of various cytokines. In this regard, ICFC is a key tool used to assess the presence of intracellular proteins such as cytokines and transcription factors. Methods: Paraformaldehyde plus saponin or the eBioscience Foxp3/Transcription Factor Staining Buffer Set were used to evaluate the non-specific intracellular retention of phycoerythrin-containing antibody conjugates by ASCs. Results: We showed that the use of phycoerythrin-containing antibody conjugates led to a false interpretation of ASC intracellular protein expression compared with other cell types. This was mainly due to the inappropriate retention of these antibodies specifically within ASCs. Furthermore, we demonstrated how to reduce this retention which allowed for a more accurate comparison of intracellular protein expression between ASCs and other cell types such as B lymphocytes. Using this methodology, our data revealed that spleen ASCs expressed toll-like receptor 7 as well as the pro-form of the inflammatory cytokine interleukin-1ß. Conclusion: Increasing the number of centrifugation steps performed on ASCs post-fixation leads to inappropriate retention of phycoerythrin-containing antibody conjugates during ICFC.

5.
Mol Cancer ; 14: 214, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694754

ABSTRACT

BACKGROUND: A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. RESULTS: Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. CONCLUSIONS: Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockdown Techniques , Hematopoietic Stem Cells/physiology , Humans , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Long Noncoding/metabolism , Sp1 Transcription Factor/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...