Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14076, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890342

ABSTRACT

Biological invasions threaten global biodiversity, altering landscapes, ecosystems, and mutualistic relationships like pollination. Orchids are one of the most threatened plant families, yet the impact of invasive bees on their reproduction remains poorly understood. We conduct a global literature survey on the incidence of invasive honeybees (Apis mellifera) on orchid pollination, followed by a study case on Australian orchids. Our literature survey shows that Apis mellifera is the primary alien bee visiting orchids worldwide. However, in most cases, introduced honeybees do not deposit orchid pollen. We also test the extent to which introduced honeybees affect orchid pollination using Diuris brumalis and D. magnifica. Diuris brumalis shows higher fruit set and pollination in habitats with both native and invasive bees compared to habitats with only introduced bees. Male and female reproductive success in D. magnifica increases with native bee abundance, while conversely pollinator efficiency decreases with honeybee abundance and rises with habitat size. Our results suggest that introduced honeybees are likely involved in pollen removal but do not effectively deposit orchid pollen, acting as pollen wasters. However, Apis mellifera may still contribute to pollination of Diuris where native bees no longer exist. Given the global occurrence of introduced honeybees, we warn that certain orchids may suffer from pollen depletion by these invaders, especially in altered habitats with compromised pollination communities.


Subject(s)
Introduced Species , Orchidaceae , Pollen , Pollination , Animals , Bees/physiology , Pollination/physiology , Orchidaceae/physiology , Pollen/physiology , Ecosystem , Male , Reproduction/physiology , Australia , Female
2.
Ecol Evol ; 13(7): e10299, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456076

ABSTRACT

Urbanization and the expansion of human activities foster radical ecosystem changes with cascading effects also involving host-pathogen interactions. Urban pollinator insects face several stressors related to landscape and local scale features such as green habitat loss, fragmentation and availability reduction of floral resources with unpredictable effects on parasite transmission. Furthermore, beekeeping may contribute to the spread of parasites to wild pollinators by increasing the number of parasite hosts. Here we used DNA-based diagnostics tools to evaluate how the occurrence of parasites, namely microsporidians (Nosema spp.), trypanosomatids (Crithidia spp.) and neogregarines (Apicystis bombi), is shaped by the above-mentioned stressors in two bumblebee species (i.e. Bombus terrestris and Bombus pascuorum). Infection rates of the two species were different and generally higher in B. terrestris. Moreover, they showed different responses towards the same ecological variables, possibly due to differences in body size and foraging habits supposed to affect their susceptibility to parasite infection. The probability of infection was found to be reduced in B. pascuorum by green habitat fragmentation, while increased along with floral resource availability. Unexpectedly, B. terrestris had a lower parasite richness nearby apiaries maybe due to the fact that parasites are prone to be transmitted among the most abundant species. Our finding supports the need to design proper conservation measures based on species-specific knowledge, as suggested by the variation in the parasite occurrence of the two species. Moreover, conservation policies aiming at safeguarding pollinators through flower planting should consider the indirect effects of these measures for parasite transmission together with pollinator biodiversity issues.

3.
Oecologia ; 199(2): 289-299, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35575832

ABSTRACT

The way urbanization shapes the intraspecific variation of pollinator functional traits is little understood. However, this topic is relevant for investigating ecosystem services and pollinator health. Here, we studied how urbanization affects the functional traits of workers in two bumblebee species (Bombus terrestris and B. pascuorum) sampled in 37 sites along a gradient of urbanization in North Italy (an area of 1800 km2 including the metropolitan context of Milan and other surrounding capital districts). Namely, we investigated the effect of land use composition, configuration, air temperature, flower resource abundance, and air pollutants on the variation of traits related to flight performance and of stress during insect development (i.e., wing size, wing shape and size fluctuating asymmetry). The functional traits of the two bumblebees responded idiosyncratically to urbanization. Urban temperatures were associated with smaller wing sizes in B. pascuorum and with more accentuated fluctuating asymmetry of wing size in B. terrestris. Moreover, flower abundance correlated with bigger wings in B. terrestris and with less asymmetric wing size in B. pascuorum. Other traits did not vary significantly, and other urban variables played minor effects. These species-specific variation patterns highlight that environmental stressor linked to urbanization negatively impact the traits related to flight performance and development stability of these syntopic bumblebees, with possible consequences on the pollination service they provide.


Subject(s)
Ecosystem , Urbanization , Animals , Bees , Flowers , Humans , Pollination , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...