Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8025, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580807

ABSTRACT

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Biocompatible Materials/pharmacology , Lipopolysaccharides , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/pharmacology , Staphylococcus epidermidis , Puromycin
2.
Plant Sci ; 343: 112063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467282

ABSTRACT

In Arabidopsis thaliana, there are four members of the LSU (RESPONSE TO LOW SULFUR) gene family which are tandemly located on chromosomes 3 (LSU1 and LSU3) and 5 (LSU2 and LSU4). The LSU proteins are small, with coiled-coil structures, and they are able to form homo- and heterodimers. LSUs are involved in plant responses to environmental challenges, such as sulfur deficiency, and plant immune responses. Assessment of the role and function of these proteins was challenging due to the absence of deletion mutants. Our work fulfills this gap through the construction of a set of LSU deletion mutants (single, double, triple, and quadruple) by CRISPR/Cas9 technology. The genomic deletion regions in the obtained lines were mapped and the level of expression of each LSUs was assayed in each mutant. All lines were viable and capable of seed production. Their growth and development were compared at several different stages with the wild-type. No significant and consistent differences in seedlings' growth and plant development were observed in the optimal conditions. In sulfur deficiency, the roots of 12-day-old wild-type seedlings exhibited increased length compared to optimal conditions; however, this difference in root length was not observed in the majority of lsu-KO mutants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Sulfur/metabolism , Plant Roots/metabolism , Seedlings/metabolism , Gene Expression Regulation, Plant , Mutation
3.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542946

ABSTRACT

Biocatalysis processes based on oxidoreductases, such as fungal laccase, are important for discovering new organic compounds with broad structures and potential applications. They include bioactive compounds, which can be obtained through laccase-mediated oxidation of organic substrates having hydroxyl and/or amino groups especially, e.g., 5-aminosalicylic acid (5-ASA) is characterised for its potential for oxidation by a fungal laccase obtained from a Cerrena unicolor strain. The biotransformation process was optimised in terms of the buffer and co-solvent concentration, buffer pH value, and laccase activity. Selected crude dyes were analysed for their bioactive properties, toxicity, and suitability for the dyeing of wool fibres. The data obtained clearly indicated that a low concentration of the reaction buffer in the pH range from 5 to 6 and in the presence of 10% acetonitrile increased the rate of substrate oxidation and the amount of the product formed. The red-brown compound obtained via laccase-mediated oxidation of 5-aminosalicylic acid showed antioxidant properties and unique antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis strains with the MIC value of 0.125 mg/mL detected for the purest dye. In addition, it was reported to have good wool fibre dyeing properties and no irritant effect after patch tests on a selected group with increased skin sensitivity.


Subject(s)
Laccase , Mesalamine , Animals , Laccase/metabolism , Mesalamine/pharmacology , Oxidation-Reduction , Antioxidants/chemistry , Coloring Agents/chemistry , Hydrogen-Ion Concentration
4.
BMC Plant Biol ; 23(1): 538, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919659

ABSTRACT

BACKGROUND: NOL12 5'-3' exoribonucleases, conserved among eukaryotes, play important roles in pre-rRNA processing, ribosome assembly and export. The most well-described yeast counterpart, Rrp17, is required for maturation of 5.8 and 25S rRNAs, whereas human hNOL12 is crucial for the separation of the large (LSU) and small (SSU) ribosome subunit rRNA precursors. RESULTS: In this study we demonstrate that plant AtNOL12 is also involved in rRNA biogenesis, specifically in the processing of the LSU rRNA precursor, 27S pre-rRNA. Importantly, the absence of AtNOL12 alters the expression of many ribosomal protein and ribosome biogenesis genes. These changes could potentially exacerbate rRNA biogenesis defects, or, conversely, they might stem from the disturbed ribosome assembly caused by delayed pre-rRNA processing. Moreover, exposure of the nol12 mutant to stress factors, including heat and pathogen Pseudomonas syringae, enhances the observed molecular phenotypes, linking pre-rRNA processing to stress response pathways. The aberrant rRNA processing, dependent on AtNOL12, could impact ribosome function, as suggested by improved mutant resistance to ribosome-targeting antibiotics. CONCLUSION: Despite extensive studies, the pre-rRNA processing pathway in plants remains insufficiently characterized. Our investigation reveals the involvement of AtNOL12 in the maturation of rRNA precursors, correlating this process to stress response in Arabidopsis. These findings contribute to a more comprehensive understanding of plant ribosome biogenesis.


Subject(s)
Arabidopsis , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , Ribosomes/genetics , Ribosomes/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , RNA Processing, Post-Transcriptional , Ribosome Subunits, Large/metabolism , Plants/genetics , Saccharomyces cerevisiae/metabolism
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894955

ABSTRACT

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.


Subject(s)
Flavonoids , Lipid Bilayers , Lipid Bilayers/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Liposomes/chemistry , Magnetic Resonance Spectroscopy , 1,2-Dipalmitoylphosphatidylcholine/chemistry
6.
Biochim Biophys Acta Biomembr ; 1865(4): 184142, 2023 04.
Article in English | MEDLINE | ID: mdl-36848998

ABSTRACT

The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.


Subject(s)
Caryophyllaceae , Primulaceae , Liposomes/chemistry , Flavonoids , Phospholipids , Plant Components, Aerial
7.
Plants (Basel) ; 11(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36235462

ABSTRACT

Sulfur LIMitation1 (SLIM1) transcription factor coordinates gene expression in plants in response to sulfur deficiency (-S). SLIM1 belongs to the family of plant-specific EIL transcription factors with EIN3 and EIL1, which regulate the ethylene-responsive gene expression. The EIL domains consist of DNA binding and dimerization domains highly conserved among EIL family members, while the N- and C-terminal regions are structurally variable and postulated to have regulatory roles in this protein family, such that the EIN3 C-terminal region is essential for its ethylene-responsive activation. In this study, we focused on the roles of the SLIM1 C-terminal region. We examined the transactivation activity of the full-length and the truncated SLIM1 in yeast and Arabidopsis. The full-length SLIM1 and the truncated form of SLIM1 with a deletion of C-terminal 106 amino acids (ΔC105) transactivated the reporter gene expression in yeast when they were fused to the GAL4 DNA binding domain, whereas the deletion of additional 15 amino acids to remove the C-terminal 120 amino acids (ΔC120) eliminated such an activity, identifying the necessity of that 15-amino-acid segment for transactivation. In the Arabidopsis slim1-2 mutant, the transcript levels of SULTR1;2 sulfate transporter and the GFP expression derived from the SULTR1;2 promoter-GFP (PSULTR1;2-GFP) transgene construct were restored under -S by introducing the full-length SLIM1, but not with the C-terminal truncated forms ΔC105 and ΔC57. Furthermore, the transcript levels of -S-responsive genes were restored concomitantly with an increase in glutathione accumulation in the complementing lines with the full-length SLIM1 but not with ΔC57. The C-terminal 57 amino acids of SLIM1 were also shown to be necessary for transactivation of a -S-inducible gene, SHM7/MSA1, in a transient expression system using the SHM7/MSA1 promoter-GUS as a reporter. These findings suggest that the C-terminal region is essential for the SLIM1 activity.

8.
J Exp Bot ; 73(22): 7362-7379, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36099003

ABSTRACT

The homeostasis of major macronutrient metabolism needs to be tightly regulated, especially when the availability of one or more nutrients fluctuates in the environment. Both sulfur metabolism and glucose signaling are important processes throughout plant growth and development, as well as during stress responses. Still, very little is known about how these processes affect each other, although they are positively connected. Here, we showed in Arabidopsis that the crucial transcription factor of sulfur metabolism, SLIM1, is involved in glucose signaling during shortage of sulfur. The germination rate of the slim1_KO mutant was severely affected by high glucose and osmotic stress. The expression of SLIM1-dependent genes in sulfur deficiency appeared to be additionally induced by a high concentration of either mannitol or glucose, but also by sucrose, which is not only the source of glucose but another signaling molecule. Additionally, SLIM1 affects PAP1 expression during sulfur deficiency by directly binding to its promoter. The lack of PAP1 induction in such conditions leads to much lower anthocyanin production. Taken together, our results indicate that SLIM1 is involved in the glucose response by modulating sulfur metabolism and directly controlling PAP1 expression in Arabidopsis during sulfur deficiency stress.


Subject(s)
Arabidopsis , Sugars , Arabidopsis/genetics , Transcription Factors/genetics , Sulfur , Glucose
9.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056804

ABSTRACT

Fungal laccase obtained from a Cerrena unicolor strain was used as an effective biocatalyst for the transformation of 8-anilino-1-naphthalenesulfonic acid into a green-coloured antibacterial compound, which can be considered as both an antimicrobial agent and a textile dye, simultaneously. The process of biosynthesis was performed in buffered solutions containing methanol as a co-solvent, allowing better solubilisation of substrate. The transformation process was optimised in terms of the buffer pH value, laccase activity, and concentrations of the substrate and co-solvent. The crude product obtained exhibited low cytotoxicity, antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis, and antioxidant properties. Moreover, the synthesised green-coloured compound proved non-allergenic and demonstrated a high efficiency of dyeing wool fibres.


Subject(s)
Anilino Naphthalenesulfonates/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coloring Agents/chemistry , Coloring Agents/pharmacology , Laccase/metabolism , Adult , Aged , Aliivibrio fischeri/drug effects , Anilino Naphthalenesulfonates/chemistry , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/toxicity , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/toxicity , Biocatalysis , Cell Line , Colon/drug effects , Coloring Agents/metabolism , Coloring Agents/toxicity , Epithelial Cells/drug effects , Female , Fibroblasts/drug effects , Fungi/enzymology , Healthy Volunteers , Humans , Hypersensitivity , Laccase/chemistry , Male , Middle Aged , Oxidation-Reduction , Skin/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
10.
J Tissue Eng Regen Med ; 16(1): 14-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34655456

ABSTRACT

There is increasing evidence that cells cultured in three-dimensional (3D) settings have superior performance compared to their traditional counterparts in monolayers. This has been attributed to cell-cell and cell-extracellular matrix interactions that more closely resemble the in vivo tissue architecture. The rapid adoption of 3D cell culture systems as experimental tools for diverse applications has not always been matched by an improved understanding of cell behavior in different 3D environments. Here, we studied human mesenchymal stem/stromal cells (hMSCs) as scaffold-free self-assembled aggregates of low and high cell number and compared them to cell-laden alginate hydrogels with and without arginine-glycine-aspartic acid peptides. We observed a significant decrease in the size of cell-only aggregates over 14 days in culture compared to the cells encapsulated in alginate hydrogels. Alginate hydrogels had persistently more living cells for a longer period (14 days) in culture as measured by total DNA content. Proliferation studies revealed that a weeklong culture of hMSCs in 3D culture, whether as aggregates or cell-laden alginate hydrogels, reduced their proliferation over time. Cell cycle analysis found no significant differences between days 1 and 7 for the different culture systems. The findings of this study improve our understanding of how aggregate cultures differ with or without a hydrogel carrier, and whether aggregation itself is important when it comes to the 3D culture of hMSCs.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Alginates/chemistry , Alginates/pharmacology , Cells, Cultured , Extracellular Matrix , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Peptides/chemistry
11.
Front Plant Sci ; 12: 765003, 2021.
Article in English | MEDLINE | ID: mdl-34925413

ABSTRACT

SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of major biotic stress response factors were also altered upon treatment with Pseudomonas effectors. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst, verified by northern and RT-qPCR, showed that lack of SmD3-b protein deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Importantly, we show that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. We propose that it is the malfunction of the stomata that is the primary cause of an altered mutant response to the pathogen. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.

12.
Cancers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072003

ABSTRACT

AIM: The anti-glioma effect of lensoside Aß alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. RESULTS: Lensoside Aß itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. CONCLUSIONS: Our results indicate that lensoside Aß plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.

13.
Foods ; 10(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923019

ABSTRACT

Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.

14.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192097

ABSTRACT

Novel sustainable processes involving oxidative enzymatic catalysts are considered as an alternative for classical organic chemistry. The unique physicochemical and bioactive properties of novel bio-products can be obtained using fungal laccase as catalyst. Among them are textile biodyes synthesised during oxidation of substrates belonging to the amine and methoxy organic derivatives. The process of synthesis occurs in mild conditions of pH, temperature, and pressure, and without using harmful oxidants. The effect of fungal laccase activity on the substrates mixture transformation efficiency was analysed in terms of antimicrobial dye synthesis on a large scale. Three new phenazine dyes, obtained in the presence of laccase from Cerrena unicolor, were studied for their structure and properties. The phenazine core structure of the products was a result of tri-molecular transformation of aminomethoxybenzoic acid and aminonaphthalene sulfonic acid isomers. One of the compounds from the synthesised dye, namely 10-((2-carboxy-6-methoxyphenyl)amino)-11-methoxybenzo[a]phenazine-8-carboxylic acid, was able to inhibit the growth of Staphylococcus aureus. The high concentration of substrates (5 g/L) was efficiently transformed during 72 h in the mild conditions of pH 4 with the use of laccase with an activity of 200 U per g of the substrates mixture. The new bioactive dye exhibited excellent dyeing properties with concomitant antibacterial and antioxidative activity. The proposed enzyme-mediated synthesis represents an alternative eco-friendly route for the synthesis of novel antimicrobial compounds with high importance for the medical textile industry.


Subject(s)
Coloring Agents/chemistry , Coloring Agents/pharmacology , Fungi/enzymology , Laccase/metabolism , Textiles , Antioxidants/chemistry , Antioxidants/pharmacology , Biotransformation , Chromatography, High Pressure Liquid , Electrochemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Oxidation-Reduction , Structure-Activity Relationship
15.
Biomolecules ; 10(1)2020 01 04.
Article in English | MEDLINE | ID: mdl-31947983

ABSTRACT

Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.


Subject(s)
Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Candida albicans/drug effects , Endopeptidases , Humans , Polymers , Staphylococcus aureus/drug effects , Sulfones/chemistry , Sulfones/pharmacology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/pharmacology
16.
Int J Biol Macromol ; 148: 1307-1315, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31739051

ABSTRACT

We have described for the first time the localisation of oxalate oxidase (OXO, EC 1.2.3.4) in Abortiporus biennis cells, using histochemical and immunochemical methods coupled with transmission electron microscopy. Rabbit anti-oxalate oxidase immunoglobulins with anti-rabbit secondary antibody conjugated with 10-nm gold particles were used. Moreover, the formation of electron dense precipitation of reaction of diaminobenzidine (DAB) with horseradish peroxidase (HRP) for histochemical localisation of the enzyme was found. OXO was localised close to the membranous structures of the cell membranes, in membranous vesicles located close to the outer cell membrane, and vacuolar membranes surrounding vacuoles. The positive immunoreaction to OXO was also intense in cell wall areas. Moreover, we proved that gene coding for OXO was expressed in the same cultures. Corresponding mRNA was isolated, full length cDNA was synthesized, cloned and sequenced. Two copies of cupin domains were found in the sequence of amino-acids conserved domain coding for the cupin enzyme. Comparison of the genomic DNA and cDNA sequences has revealed the presence of seventeen introns in the gene. The isoelectric point of the protein was estimated at pH 4.5 and several possible N-glycosylation sites were predicted.


Subject(s)
Basidiomycota/enzymology , Basidiomycota/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Basidiomycota/ultrastructure , DNA, Complementary , Enzyme Activation , Immunohistochemistry , Oxidoreductases/chemistry , Oxidoreductases/isolation & purification , Protein Transport , Sequence Analysis, DNA
17.
Postepy Dermatol Alergol ; 35(6): 626-630, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30618533

ABSTRACT

INTRODUCTION: Actinic keratosis (AK) is a common age-associated dermatosis typical for skin with photo-ageing features. Actinic keratosis lesions transform into invasive squamous cell carcinoma, if left untreated, but inductive factors remain unknown. A role of prostaglandins in the neoplastic process has been postulated. AIM: To evaluate the possible correlation between cyclooxygenase-2 (COX-2) antigen expression in the immunohistochemical reaction and the stage of AK using the keratinocytic intraepidermal neoplasia (KIN) classification, age, sex and skin phenotype. MATERIAL AND METHODS: Skin samples of AK were examined histopathologically using the KIN classification. Immunohistochemical analysis of COX-2 expression was conducted using a commercially available kit and Image Processing and Analysis in Java. The intensity was presented as the percentage of cells with a positive reaction. RESULTS: Out of the 94 subjects with AK (aged 51-93 years; mean: 76.51 ±9.64), 58 were female and 36 male. Phenotype 2 was found in 50 and phenotype 3 in 44 patients. Mean values of positive immunohistochemical reaction for COX-2 were 2.16 ±6.56% for women and 1.96 ±6.59% for men (2.47 ±6.61%), with no statistically significant difference. Mean values of anti-COX-2 antibody reaction were 2.30 ±6.82% in the KIN1 group and 2.48 ±7.01% in the KIN2 group, while no expression was found in all cases with KIN3. No statistically significant differences were found between the percentage of COX-2 positive cells in KIN1/KIN2. CONCLUSIONS: No statistically significant correlations between the intensity of COX-2 reaction and AK stage were found. Cyclooxygenase-2 expression in AK is not affected by age, sex, or skin phenotype.

18.
Pol Merkur Lekarski ; 40(235): 56-60, 2016 Jan.
Article in Polish | MEDLINE | ID: mdl-26891439

ABSTRACT

Stem cells (SC) are characterized by the possibility of a potentially unlimited number of divisions, that are, its self-renewal and differentiation pot in all tissues of the body. The term "stem cells" was first used by the Russian histologist Alexander Maksimova in 1908 in relation to the hematopoietic stem cell (HSC - haematopoietic stem cells). SC, because of their ability to self-renewal and proliferation enormous potential, became the subject of numerous research around the world. These studies offer hope for improving the prognosis and optimization methods for the treatment of many types of diseases, including diseases of the developing autoimmune which include rheumatic diseases. Pain associated with the most common rheumatic diseases, like rheumatoid arthritis and osteoarthritis, cause temporary restriction of efficiency, frequent use of sick leave and abuse of painkillers. Rheumatic diseases often have young people in the labor force, have a chronic condition, and despite of the treatment over time lead to permanent disability and even premature death. Therapy with stem cells, can become an effective alternative to standard therapies used so far. The results of the first studies on the use of stem cells are promising and warrant further work on their application not only in rheumatic diseases.


Subject(s)
Arthritis, Rheumatoid/therapy , Hematopoietic Stem Cell Transplantation , Osteoarthritis/therapy , Humans
19.
Rheumatol Int ; 33(2): 429-34, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22453529

ABSTRACT

There are studies about health-related quality of life (HRQoL) in patients with rheumatoid arthritis (RA), but few studies prospectively assessed HRQoL. The main purpose of this study was to analyze HRQoL in patients hospitalized due to RA exacerbation and observed over a planned 2-year follow-up in an outpatient setting. The study involved 42 women and 9 men, at mean age of 62.5 years (SD ± 12.6). The mean duration of the study was 22-23 months. The HRQoL analysis was performed using the SF-36 survey. At the beginning of the study, basic data on age, sex, selected biochemical (ESR, CRP, GFR, hemoglobin, plasma albumin, plasma protein), and clinical parameters (the duration of RA, VAS, DAS28, BMI, the presence of cardiovascular disease, diabetes, osteoporosis, osteoporotic fractures, osteoarthritis, neoplasm) were collected. Questionnaires were completed at the beginning and end of the study. Statistically significant reductions in HRQoL scores were observed in social functioning (SF; 0.42 vs 0.32, P < 0.05), whereas role-emotional health (RE; 0.48 vs 0.59, P < 0.05) and mental health (MH; 0.47 vs 0.54, P < 0.05) scores were increased. A decrease in the SF was positively correlated with the lack of osteoporosis at baseline (r = 0.35, P > 0.02). An increase in the MH was inversely correlated with BMI (r = -0.31, P < 0.05), and the level of hemoglobin (r = -0.32, P < 0.028) and positively correlated with the presence of osteoarthritis at baseline (r = 0.29, P < 0.05). In RA patients, dimensions of HRQoL as SF, RE, and MH could change within 2 years and these changes could be related to comorbidities. Although preliminary findings are promising, further studies are needed.


Subject(s)
Arthritis, Rheumatoid/psychology , Quality of Life , Adult , Aged , Aged, 80 and over , Body Mass Index , Female , Health Status , Hemoglobins/analysis , Humans , Male , Middle Aged , Osteoarthritis/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...