Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687126

ABSTRACT

Short shelf-life and poor microbial quality of minimally processed foods of plant origin pose a serious problem for the food industry. Novel techniques of minimal treatment combined with disinfection are being researched, and, for fresh juice, the addition of antimicrobial agents appears to be a promising route. In this research, fresh, nonfiltered, unpasteurized carrot juice was mixed with four potential antimicrobials (bourbon vanilla extract, peppermint extract, cannabidiol oil, and grapefruit extract). All four variants and the reference pure carrot juice were analyzed for metapopulational changes, microbial changes, and physicochemical changes. The potential antimicrobials used in the research have improved the overall microbial quality of carrot juice across 4 days of storage. However, it is important to notice that each of the four agents had a different spectrum of effectiveness towards the groups identified in the microflora of carrot juice. Additionally, the antimicrobials have increased the diversity of the carrot juice microbiome but did not prevent the occurrence of pathogenic bacteria. In conclusion, the use of antimicrobial agents such as essential oils or their derivatives may be a promising way of improving the microbial quality and prolonging the shelf-life of minimally processed foods, such as fresh juices, but the technique requires further research.


Subject(s)
Anti-Infective Agents , Daucus carota , Food , Anti-Infective Agents/pharmacology , Disinfection , Plant Extracts/pharmacology
2.
Foods ; 12(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37628078

ABSTRACT

Plant-based traditional fermented products are attracting a lot of interest in global markets. An example of them is beetroot leaven, which is valued for its high bioactive compound content. The variety of production recipes and the spontaneous nature of red beet fermentation favor its high diversity. This study aimed to analyze the impact of external factors-temperature, brine salinity, and garlic dose-on the beetroot fermentation and bacterial metapopulation responsible for this process. The research results confirmed the significant influence of the selected and analyzed factors in shaping the leaven physicochemical profile including organic acid profile and betalain content. Analysis of bacterial populations proved the crucial importance of the first 48 h of the fermentation process in establishing a stable metapopulation structure and confirmed that this is a targeted process driven by the effect of the analyzed factors. Lactobacillaceae, Enterobacteriaceae, and Leuconostocaceae were observed to be the core microbiome families of the fermented red beet. Regardless of the impact of the tested factors, the leaven maintained the status of a promising source of probiotic bacteria. The results of this research may be helpful in the development of the regional food sector and in improving the quality and safety of traditionally fermented products such as beetroot leaven.

3.
J Hazard Mater ; 452: 131209, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36940526

ABSTRACT

The commercial formulations of herbicides rely on surfactants which increase the efficiency of active substance. Herbicidal ionic liquids (ILs), in which cationic surfactants are combined with herbicidal anions, allow for additives' reduction and ensure very good herbicide performance with lower doses. We aimed to test the impact of synthetic and natural cations on biological degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Although primary biodegradation was high, the mineralization in agricultural soil indicated incomplete conversion of ILs to CO2. Even the introduction of naturally-derived cations resulted in an increase in the herbicide's half-lives - from 32 days for [Na][2,4-D] to 120 days for [Chol][2,4-D] and 300 days for the synthetic tetramethylammonium derivative [TMA][2,4-D]. Bioaugmentation with 2,4-D-degrading strains improves the herbicides' degradation, which was reflected by higher abundance of tfdA genes. Microbial community analysis confirmed that hydrophobic cationic surfactants, even those based on natural compounds, played a negative role on microbial biodiversity. Our study provides a valuable indication for further research related to the production of a new generation of environmentally friendly compounds. Moreover, the results shed a new light on the ionic liquids as independent mixtures of ions in the environment, as opposed to treating them as new type of environmental pollutants.


Subject(s)
Herbicides , Ionic Liquids , Microbiota , Herbicides/metabolism , Ionic Liquids/chemistry , Soil , 2,4-Dichlorophenoxyacetic Acid/metabolism , Biodegradation, Environmental , Cations
4.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500694

ABSTRACT

Dietary supplements are widely available products used by millions of people around the world. Unfortunately, the procedure of adding pharmaceutical and psychoactive substances has recently been observed, in order to increase the effectiveness of supplements in the form of hemp oils. For this reason, it is extremely important to develop analytical methods for the detection of substances prohibited in dietary supplements and food products. In the present study, using the LC-MS/MS technique, an innovative method for the detection and quantification of 117 synthetic cannabinoids and 13 natural cannabinoids in dietary supplements and food products in the form of oils during one 13-min chromatographic run was developed. Each method was fully validated by characterization of the following parameters: The limit of detection was set to 0.1 ng/mL (100 µg/g, 0.01%). The limit of quantification ranged from 0.05 ng/mL to 50 ng/mL. The criteria assumed for systematic error caused by methodological bias (±20%) resulting from the recovery of analytes after the extraction process, as well as the coefficient of variation (CV) (≤20%), were met for all 130 tested compounds. The positive results of the validation confirmed that the developed methods met the requirements related to the adequacy of their application in a given scope. Additionally, methods developed using the LC-MS/MS technique were verified via proficiency tests. The developed analytical procedure was successfully used in the analysis of hemp oils and capsules containing them in the studied dietary supplements.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Cannabinoids/analysis , Cannabis/chemistry , Cannabinoid Receptor Agonists
5.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566181

ABSTRACT

The aim of this study was to analyze the microbiome of carrot (Daucus carota subsp. sativus) subjected to minimal pre-treatment (rinsing in organic acid solution) and packaging in a high-oxygen modified atmosphere, and then stored for 17 days under refrigeration conditions (4 °C). The highest levels of bacteria in the carrot microbiome were characterized, at almost 78%, by bacteria belonging to the Enterobacteriaceae and Pseudomonadaceae families. Rinsing in a solution of ascorbic and citric acids resulted in the improvement of microbiological quality in the first day of storage. However, the use of a high-oxygen modified atmosphere extended the shelf life of the minimally processed product. Compared to carrots stored in air, those stored in high oxygen concentration were characterized by a greater ratio of bacteria belonging to the Serratia and Enterobacter genera, and a lower ratio belonging to the Pseudomonas and Pantoea genera. Moreover, the ß-biodiversity analysis confirmed that the oxygen concentration was the main factor influencing the differentiation of the metabiomes of the stored carrots. The bacterial strains isolated from carrots identified by molecular methods were mostly pathogenic or potentially pathogenic microorganisms. Neither the minimal pre-treatment nor packaging in high-oxygen atmosphere was able to eliminate the threat of pathogenic bacteria emerging in the product.


Subject(s)
Daucus carota , Microbiota , Atmosphere , Bacteria/genetics , Carbon Dioxide/analysis , Colony Count, Microbial , Food Microbiology , Food Packaging/methods , Food Preservation/methods , Humans , Oxygen/analysis
6.
Molecules ; 27(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335192

ABSTRACT

Mastitis is the most expensive disease of dairy cattle across the world and is the main reason for the use of antibiotics in animal husbandry. The aim of this study was to analyze the microbiome of raw milk obtained from a semi-subsistence farm located in the Kuyavian-Pomeranian Voivodeship in Poland. Milk from healthy cows and from cows with subclinical mastitis was analyzed. The following pathogenic bacteria were found in milk from individuals with subclinical mastitis: Escherichia coli or Streptococcus agalactiae. The composition of drinking milk was assessed on the basis of 16S rRNA gene sequencing using the Ion Torrent platform. Based on the conducted research, significant changes in the composition of the milk microbiome were found depending on the physiological state of the cows. The microbiome of milk from healthy cows differed significantly from the milk from cows with subclinical mastitis. Two phyla dominated in the milk from healthy cows: Firmicutes and Proteobacteria, in equal amounts. On the contrary, in the milk from cows with diagnosed subclinical mastitis, one of the types dominated: either Firmicutes or Proteobacteria, and was largely predominant. Moreover, the milk microflora from the ill animals were characterized by lower values of the determined biodiversity indicators than the milk from healthy cows. The presence of pathogenic bacteria in the milk resulted in a significant reduction in the share of lactic acid bacteria in the structure of the population of microorganisms, which are of great importance in the production technology of regional products.


Subject(s)
Mastitis, Bovine , Microbiota , Animals , Bacteria/genetics , Cattle , Female , Humans , Mastitis, Bovine/microbiology , Microbiota/genetics , Milk/chemistry , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
7.
Front Hum Neurosci ; 15: 740277, 2021.
Article in English | MEDLINE | ID: mdl-34733146

ABSTRACT

Background: Impairments in various subdomains of memory have been associated with chronic cannabis use, but less is known about their neural underpinnings, especially in the domain of the brain's oscillatory activity. Aims: To investigate neural oscillatory activity supporting working memory (WM) in regular cannabis users and non-using controls. We focused our analyses on frontal midline theta and posterior alpha asymmetry as oscillatory fingerprints for the WM's maintenance process. Methods: 30 non-using controls (CG) and 57 regular cannabis users-27 exclusive cannabis users (CU) and 30 polydrug cannabis users (PU) completed a Sternberg modified WM task with a concurrent electroencephalography recording. Theta, alpha and beta frequency bands were examined during WM maintenance. Results: When compared to non-using controls, the PU group displayed increased frontal midline theta (FMT) power during WM maintenance, which was positively correlated with RT. The posterior alpha asymmetry during the maintenance phase, on the other hand, was negatively correlated with RT in the CU group. WM performance did not differ between groups. Conclusions: Both groups of cannabis users (CU and PU), when compared to the control group, displayed differences in oscillatory activity during WM maintenance, unique for each group (in CU posterior alpha and in PU FMT correlated with performance). We interpret those differences as a reflection of compensatory strategies, as there were no differences between groups in task performance. Understanding the psychophysiological processes in regular cannabis users may provide insight on how chronic use may affect neural networks underlying cognitive processes, however, a polydrug use context (i.e., combining cannabis with other illegal substances) seems to be an important factor.

8.
Molecules ; 26(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443615

ABSTRACT

The aim of this study was to analyze the microbiome of raw milk obtained from three semi-subsistence farms (A, B, and C) located in the Kuyavian-Pomeranian Voivodeship in Poland. The composition of drinking milk was assessed on the basis of 16S rRNA gene sequencing using the Ion Torrent platform. Based on the conducted research, significant changes in the composition of the milk microbiome were found depending on its place of origin. Bacteria belonging to the Bacillus (17.0%), Corynebacterium (12.0%) and Escherichia-Shigella (11.0%) genera were dominant in the milk collected from farm A. In the case of the milk from farm B, the dominant bacteria belonged to the Acinetobacter genus (21.0%), whereas in the sample from farm C, Escherichia-Shigella (24.8%) and Bacillus (10.3%) dominated the microbiome. An analysis was performed using the PICRUSt tool (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) in order to generate a profile of genes responsible for bacterial metabolism. The conducted analysis confirmed the diversity of the profile of genes responsible for bacterial metabolism in all the tested samples. On the other hand, simultaneous analysis of six KEGG Orthologs (KO), which participated in beta-lactam resistance responsible for antibiotic resistance of bacteria, demonstrated that there is no significant relationship between the predicted occurrence of these orthologs and the place of existence of microorganisms. Therefore, it can be supposed that bacterial resistance to beta-lactam antibiotics occurs regardless of the environmental niche, and that the antibiotic resistance maintained in the population is a factor that shapes the functional structure of the microbial consortia.


Subject(s)
Farms , Microbiota/genetics , Milk/microbiology , Sleep, Slow-Wave , Animals , Bacteria/genetics , Bacteria/isolation & purification
9.
Front Hum Neurosci ; 15: 677793, 2021.
Article in English | MEDLINE | ID: mdl-34177497

ABSTRACT

Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims: In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behavioral data analysis. Results The groups did not differ in memory performance based on receiver operating characteristic method in accuracy and discriminability indicators nor mean reaction times for old/new images. The frontal old/new effect expected from prior research was observed for all participants, while a parietal old/new effect was not observed. While, the significant differences in the late parietal component (LPC) amplitude was observed between CG and PU but not between CG and CU nor CU and PU. Linear regression analysis was used to examine the mean amplitude of the LPC component as a predictor of memory performance accuracy indicator. LPC amplitude predicts recognition accuracy only in the CG. Conclusion The results showed alterations in recognition memory processing in CU and PU groups compared to CG, which were not manifested on the behavioral level, and were the most prominent in cannabis polydrug users. We interpret it as a manifestation of the cumulative effect of multiple drug usage in the PU group.

10.
Molecules ; 25(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941126

ABSTRACT

The bioremediation of areas contaminated with hydrocarbon compounds and heavy metals is challenging due to the synergistic toxic effects of these contaminants. On the other hand, the phenomenon of the induction of microbial secretion of exopolysaccharides (EPS) under the influence of heavy metals may contribute to affect the interaction between hydrophobic hydrocarbons and microbial cells, thus increasing the bioavailability of hydrophobic organic pollutants. The purpose of this study was to analyze the impact of heavy metals on the changes in the metapopulation structure of an environmental consortium, with particular emphasis on the number of copies of orthologous genes involved in exopolysaccharide synthesis pathways and the biodegradation of hydrocarbons. The results of the experiment confirmed that the presence of heavy metals at concentrations of 50 mg·L-1 and 150 mg·L-1 resulted in a decrease in the metabolic activity of the microbial consortium and its biodiversity. Despite this, an increase in the biological degradation rate of polycyclic aromatic hydrocarbons was noted of 17.9% and 16.9%, respectively. An assessment of the estimated number of genes crucial for EPS synthesis and biodegradation of polycyclic aromatic hydrocarbons confirmed the relationship between the activation of EPS synthesis pathways and polyaromatic hydrocarbon biodegradation pathways. It was established that microorganisms that belong to the Burkholderiales order are characterized by a high representation of the analyzed orthologs and high application potential in areas contaminated with heavy metals and hydrocarbons.


Subject(s)
Biodiversity , Burkholderia/metabolism , Metals, Heavy/pharmacology , Microbial Consortia , Polycyclic Aromatic Hydrocarbons/metabolism , Biodegradation, Environmental , Metals, Heavy/metabolism
11.
Article in English | MEDLINE | ID: mdl-30875750

ABSTRACT

The aim of the study was to evaluate the effect of herbicidal ionic liquids on the population changes of microorganisms used in a batch anaerobic digester. The influence of the following ionic liquids: benzalkonium (2,4-dichlorophenoxy)acetate (BA)(2,4-D), benzalkonium (4-chloro-2-methylphenoxy)acetate (BA)(MCPA), didecyldimethylammonium (2,4-dichlorophenoxy)acetate (DDA)(2,4-D), didecyldimethylammonium (4-chloro-2-methylphenoxy)acetate (DDA)(MCPA), as well as reference herbicides (4-chloro-2-methylphenoxy)acetic acid (MCPA) and (2,4-dichlorophenoxy)acetic acid (2,4-D) in the form of sodium salts on biogas production efficiency was investigated. The effective concentration (EC50) values were determined for all tested compounds. (MCPA)- was the most toxic, with an EC50 value of 38.6⁻41.2 mg/L. The EC50 for 2,4-D was 55.7⁻59.8 mg/L. The addition of the test substances resulted in changes of the population structure of the microbiota which formed the fermentation pulp. The research was based on 16S rDNA analysis with the use of the Next Generation Sequencing method and the MiSeq platform (Illumina, San Diego, CA, USA). There was a significant decrease in bacteria belonging to Firmicutes and Archaea belonging to Euryarchaeota. A significant decrease of the biodiversity of the methane fermentation microbiota was also established, which was expressed by the decrease of the operational taxonomic units (OTUs) and the value of Shannon's entropy. In order to determine the functional potential of bacterial metapopulations based on the 16SrDNAprofile, the PICRUSt(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)tool was used, which allowed to determine the gene potency of microorganisms and their ability to biodegrade the herbicides. In the framework of the conducted analysis, no key genes related to the biodegradation of MCPA or 2,4-D were found, and the observed decrease of their content in the supernatant liquid was caused by their sorption on bacterial biomass.


Subject(s)
Bacteria/drug effects , Biofuels/microbiology , Herbicides/toxicity , Ionic Liquids/toxicity , Microbiota/drug effects , Biodegradation, Environmental
12.
Pol J Microbiol ; 67(2): 181-190, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30015456

ABSTRACT

A total of 123 Trichoderma strains were isolated from different habitats and tested for their ability to degrade cellulose and xylan by simple plate screening method. Among strains, more than 34 and 45% respectively, exhibited higher cellulolytic and xylanolytic activity, compared to the reference strain T. reesei QM 9414. For strains efficiently degrading cellulose, a highest enzyme activity was confirmed using filter paper test, and it resulted in a range from 1.01 to 7.15 FPU/ml. Based on morphological and molecular analysis, the isolates were identified as Trichoderma. The most frequently identified strains belonged to Trichoderma harzianum species. Among all strains, the most effective in degradation of cellulose and xylose was T. harzianum and T. virens, especially those isolated from forest wood, forest soil or garden and mushroom compost. The results of this work confirmed that numerous strains from the Trichoderma species have high cellulose and xylan degradation potential and could be useful for lignocellulose biomass conversion e.g. for biofuel production.


Subject(s)
Cellulose/metabolism , Trichoderma/enzymology , Xylans/metabolism , Biomass , Cellulase/metabolism , Ecosystem , Lignin/metabolism , Soil Microbiology , Temperature , Wood/microbiology
13.
Ecotoxicol Environ Saf ; 147: 157-164, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28843187

ABSTRACT

Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria.


Subject(s)
Ionic Liquids/toxicity , Microbial Consortia/drug effects , Organophosphorus Compounds/toxicity , Soil Microbiology/standards , Soil Pollutants/toxicity , Sphingomonas/drug effects , Biodegradation, Environmental , Biodiversity , Ionic Liquids/chemistry , Organophosphorus Compounds/chemistry , Poland , Soil/chemistry , Soil Pollutants/chemistry , Sphingomonas/metabolism , Urbanization
14.
Pol J Microbiol ; 66(3): 345-352, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-29319531

ABSTRACT

The aim of the studies was to compare the composition of soil bacterial metabiomes originating from urbanized areas and areas con¬taminated with hydrocarbons with those from agricultural soil and forest soil obtained from a protected wild-life park area. It should be noted that hydrocarbons are everywhere therefore bacteria capable of their utilization are present in every soil type. In the hydrocarbon-contaminated soil and in the soil of anthropogenic origin, the bacteria belonging to Gammaproteobacteria were dominant (28.4-36.6%), whereas in the case of agricultural soil and protected wild-life park soil their ratios decreased (22.8-23.0%) and were similar to that of Alphaproteobacteria. No statistically significant changes were observed in terms of the Operational Taxonomic Unit identified in the studies soils, however, based on the determined alpha-diversity it can be established that contaminated soils were characterized by lower biodiversity indices compared to agricultural and forest soils. Furthermore, the dioxygenase level was also evaluated in the studied soils, which are genes encoding crucial enzymes for the decomposition of mono- and polycyclic aromatic hydrocarbons during the biodegradation of diesel oil (PAHRHDαGN, PAHRHDαGP, xylE, Cat 2,3, ndoB). It was concluded that both the population structure of the soil metabiome and the number of genes crucial for biodegradation processes differed significantly between the soils. The level of analysed genes showed a similar trend, as their highest number in relations to genes encoding 16S RNA was determined in urban and hydrocarbon-contaminated soil.


Subject(s)
Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Biodegradation, Environmental , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Alphaproteobacteria/classification , DNA, Bacterial/genetics , Dioxygenases/analysis , Gammaproteobacteria/classification , Gasoline/analysis , Metagenomics , Poland , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
15.
J Sci Food Agric ; 97(2): 659-668, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27144959

ABSTRACT

BACKGROUND: Knowledge regarding microaerophilic and anaerobic specific spoilage organisms (SSOs) is crucial for an appropriate evaluation of vacuum-packed ham. The objective of this study was to characterize the SSO community in vacuum-packed ham by a culture-dependent technique and MiSeq next-generation sequencing (NGS) platform. The relation between changes among the SSO group in the ham and changes in sensory characteristics of the product was also assessed. RESULTS: In the study, conventional microbiological analyses were employed in order to establish the participation of several groups of microorganisms in the deterioration of vacuum-packed ham. The diversity of the SSO group in the product was further assessed with the use of MiSeq NGS technology. The bacteria identified in sliced cooked ham belonged mostly to four phyla, namely Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes. A temperature of 4 °C favoured the development of mesophilic and psychrophilic/psychrotrophic flora, mainly Lactobacillaceae, Enterobacteriaceae and Micrococcaceae families. A high ratio of Brochothrix thermosphacta species and new, cold-tolerant Clostridium spp. was also observed. The growth of these microorganisms facilitated changes in the pH value and organoleptic characteristics of the product. CONCLUSION: This study confirms that the combination of culturing and MiSeq NGS technology improves the microbial evaluation of food. © 2016 Society of Chemical Industry.


Subject(s)
Enterobacteriaceae/growth & development , Food Packaging , Food Preservation , Food Storage , Lactobacillaceae/growth & development , Meat/microbiology , Micrococcaceae/growth & development , Animals , Computational Biology , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Fast Foods/analysis , Fast Foods/microbiology , Food Quality , High-Throughput Nucleotide Sequencing , Humans , Hydrogen-Ion Concentration , Lactobacillaceae/classification , Lactobacillaceae/isolation & purification , Meat/analysis , Mechanical Phenomena , Micrococcaceae/classification , Micrococcaceae/isolation & purification , Molecular Typing , Poland , Principal Component Analysis , Refrigeration , Sensation , Sus scrofa , Vacuum
16.
Environ Sci Pollut Res Int ; 23(22): 23043-23056, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27585583

ABSTRACT

The aim of this study was to evaluate the effect of bioaugmentation and addition of rhamnolipids on the biodegradation of PAHs in artificially contaminated soil, expression of genes crucial for the biodegradation process (PAHRHDαGN, PAHRHDαGP), and the synthesis of rhamnolipids as well as population changes in the soil bacterial metabiome. The positive effect of bioaugmentation and addition of rhamnolipids on the bioremediation of the majority of PAHs was confirmed during the early stages of treatment, especially in case of the most structurally complicated compounds. The results of metagenomic analysis indicated that the initial changes in the soil metabiome caused by bioaugmentation diminished after 3 months and that the community structure in treated soil was similar to control. The survival period of bacteria introduced into the soil via bioaugmentation reached a maximum of 3 months. The increased expression of genes observed after addition of PAH into the soil also returned to the initial conditions after 3 months.


Subject(s)
Glycolipids/metabolism , Microbial Consortia/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Soil Microbiology , Soil Pollutants/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Gene Expression , Polycyclic Aromatic Hydrocarbons/metabolism , Soil
17.
Water Air Soil Pollut ; 226(8): 270, 2015.
Article in English | MEDLINE | ID: mdl-26213425

ABSTRACT

The search for new bacterial consortia capable of removing PAH from the environment is associated with the need to employ novel, simple, and economically efficient detection methods. A fluorimetric method (FL) as well as high voltage electrochemiluminescence (ECL) on a modified surface of an aluminum electrode were used in order to determine the changes in the concentrations of PAH in the studied aqueous solutions. The ECL signal (the spectrum and emission intensity for a given wavelength) was determined with the use of an apparatus operating in single photon counting mode. The dependency of ECL and FL intensity on the concentration of naphthalene, phenanthrene, and pyrene was linear in the studied concentration range. The biodegradation kinetics of the particular PAH compounds was determined on the basis of the obtained spectroscopic determinations. It has been established that the half-life of naphthalene, phenanthrene, and pyrene at initial concentrations of 50 mg/l (beyond the solubility limit) reached 41, 75, and 130 h, accordingly. Additionally, the possibility of using ECL for rapid determination of the soluble fraction of PAH directly in the aqueous medium has been confirmed. Metagenomic analysis of the gene encoding 16S rRNA was conducted on the basis of V4 hypervariable region of the 16S rRNA gene and allowed to identify 198 species of bacteria that create the S4consortium. The consortium was dominated by Gammaproteobacteria (78.82 %), Flavobacteria (9.25 %), Betaproteobacteria (7.68 %), Sphingobacteria (3.76 %), Alphaproteobacteria (0.42 %), Clostridia (0.04 %), and Bacilli (0.03 %).

18.
J Environ Manage ; 132: 121-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291585

ABSTRACT

The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline/analysis , Glycolipids/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Poland
19.
Chemosphere ; 93(11): 2823-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24161581

ABSTRACT

The wastewater originating from explosives manufacturing plants are characterized by a high concentration of nitrates (3200mgNL(-1)), sulfates (1470mgL(-1)) and low pH (1.5) as well as the presence of organic compounds, such as nitroglycerin (1.9mgL(-1)) and nitroglycol (4.8mgL(-1)). The application of glycerol (C/N=3) at such a high concentration enabled complete removal of nitrates and did not cause the anaerobic glycerol metabolic pathway of the DNC4 consortium to activate, as confirmed by the low concentrations of 1,3-propanediol (0.16gL(-1)) and acetic acid (0.11gL(-1)) in the wastewater. Increasing the glycerol content (C/N=5) contributed to a notable increase in the concentration of both compounds: 1.12gL(-1) for acetic acid and 1.82 for 1,3-PD (1,3-propanediol). The nitrate reduction rate was at 44mgNg(-1) biomass d(-1). In order to assess the metabolic activity of the microorganisms, a method to determine the redox potential was employed. It was established, that the microorganisms can be divided into four groups, based on the determined denitrification efficiency and zero-order nitrate removal constants. The first group, involving Pseudomonas putida and Pseudomonas stutzeri, accounts for microorganisms capable of the most rapid denitrification, the second involves rapid denitrifying microbes (Citrobacter freundi and Pseudomonas alcaligenes), the third group are microorganisms exhibiting moderate denitrification ability: Achrobactrum xylosoxidans, Ochrobactrum intermedium and Stenotrophomonas maltophila, while the last group consists of slow denitrifying bacteria: Rodococcus rubber and Sphignobacterium multivorum.


Subject(s)
Glycerol/metabolism , Microbial Consortia/physiology , Nitrogen/metabolism , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Denitrification , Nitrogen/analysis , Sewage/microbiology , Wastewater/microbiology , Water Pollutants, Chemical/analysis
20.
Water Air Soil Pollut ; 223(7): 4275-4282, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22865941

ABSTRACT

The study focused on assessing the influence of rhamnolipids on the phytotoxicity of diesel oil-contaminated soil samples. Tests evaluating the seed germination and growth inhibition of four terrestrial plant species (alfalfa, sorghum, mustard and cuckooflower) were carried out at different rhamnolipid concentrations (ranging from 0 to 1.200 mg/kg of wet soil). The experiments were performed in soil samples with a different diesel oil content (ranging from 0 to 25 ml/kg of wet soil). It was observed that the sole presence of rhamnolipids may be phytotoxic at various levels, which is especially notable for sorghum (the germination index decreased to 41 %). The addition of rhamnolipids to diesel oil-contaminated soil samples contributed to a significant increase of their phytotoxicity. The most toxic effect was observed after a rhamnolipid-supplemented diesel oil biodegradation, carried out with the use of a hydrocarbon-degrading bacteria consortium. The supplemention of rhamnolipids (600 mg/kg of wet soil) resulted in a decrease of seed germination of all studied plant species and an inhibition of microbial activity, which was measured by the 2,3,5-triphenyltetrazolium chloride tests. These findings indicate that the presence of rhamnolipids may considerably increase the phytotoxicity of diesel oil. Therefore, their use at high concentrations, during in situ bioremediation processes, should be avoided in a terrestrial environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...