Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34771889

ABSTRACT

Most studies on soil enzymes are focused on the upper horizons of the soil profile, even though they transform the soil organic matter at every depth of the soil profile. The aim of this work was to investigate the distribution of ß-glucosidase (GLU), nitrate reductase (NR), urease (UR), phosphatase (PHA), dehydrogenase (DHA) and catalase (CAT) activity through 14 trunked soil profiles of the Luvisols formed from a glacial till. The content of microbial biomass carbon (MBC) as well as physicochemical properties such as organic carbon (CORG), total nitrogen (NTOT), available P, K and Mg, soil density and porosity, pH in KCl and fractional composition were also studied. In general, enzymatic activity was highest in the top 30 cm layer of the profiles and decreased progressively towards the deeper horizons. The exceptions were the NR activity, which was active only in the Ap horizon and whose activity decreased sharply to nearly zero in the Bt horizon and parent rock, and the PHA activity, which was highly active even in the parent rock depth. The decreased availability of carbon and nutrients was the main driver of decreases in microbial abundance and enzymatic activity with depth. The enzymatic activity, when expressed on a CORG and MBC basis, behaves differently compared to the activity expressed on a soil mass basis. The activity decreased (NR), increased (PHA, UR), showed no clear pattern (GLU) or the changes were not significant (DHA, CAT). The content of CORG, NTOT, K and PAVAIL generally decreased with depth, while for Mg, there was no clear direction in the profile distribution. Future studies to characterize the substrate distribution within the soil profile and enzyme stability will provide further insight into the controls on nutrient cycling and related enzymes throughout the soil profiles.

2.
Environ Monit Assess ; 186(12): 8425-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193868

ABSTRACT

The effect of the time of catch crop (field pea) incorporation [catch crop incorporated in the autumn (A) or in the spring (B) versus plots without a catch crop (C)] on the soil enzymes related to N transformation (urease - UR, protease - PRO, nitrate reductase - NR, arginine ammonification rate - AAR), the total N and mineral N as well as microbial biomass N (MBN) contents were investigated in a 3-year experiment. The catch crop was sown at the beginning of August and plowed in the autumn in 2008, 2009 and 2010 or left as mulch during the winter. Soil samples for microbial activity were taken from spring barley plots that were grown in 2009, 2010 and 2011 before sowing (March), during the tillering phase (May), shooting (June) and after the harvesting of spring barley (August). The use of catch crop significantly increased the soil mineral and MBN contents as well as the activities of PRO and NR as compared to the control soil. The spring incorporation of the field pea significantly increased the MBN content in contrast to the autumn application, while the activity of N-cycle enzymes were clearly unaffected (UR and AAR) regardless of the time of the incorporation of field pea or else the results were inconsistent (PRO and NR). When the catch crop was incorporated in the spring, a significantly higher content of mineral N as compared to autumn incorporation was noted on only two of the four sampling dates. The enzymatic activity (PRO and AAR) was about 1.3-2.8 times higher in May and June as compared with March and August. Both spring or autumn incorporation of catch crop can be a useful management practice to increase the soil mineral N content and enhance the soil biological activity.


Subject(s)
Agriculture/methods , Enzymes/analysis , Nitrogen/analysis , Pisum sativum/growth & development , Soil/chemistry , Biomass , Environmental Monitoring , Hordeum/metabolism , Nitrogen Cycle , Seasons , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...