Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 17(1): e202101075, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34738734

ABSTRACT

Three-dimensional (3D) halide perovskites (HPs) are in the spotlight of materials science research due to their excellent photonic and electronic properties suitable for functional device applications. However, the intrinsic instability of these materials stands as a hurdle in the way to their commercialization. Recently, two-dimensional (2D) HPs have emerged as an alternative to 3D perovskites, thanks to their excellent stability and tunable optoelectronic properties. Unlike 3D HPs, a library of 2D perovskites could be prepared by utilizing the unlimited number of organic cations since their formation is not within the boundary of the Goldschmidt tolerance factor. These materials have already proved their potential for applications such as solar cells, light-emitting diodes, transistors, photodetectors, photocatalysis, etc. However, poor charge carrier separation and transport efficiencies of 2D HPs are the bottlenecks resulting in inferior device performances compared to their 3D analogs. This minireview focuses on how to address these issues through the adoption of different strategies and improve the optoelectronic properties of 2D perovskites.

2.
Acc Chem Res ; 55(3): 275-285, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34806368

ABSTRACT

ConspectusLead halide perovskites are under the spotlight of current research due to their potential for efficient and cost-effective next-generation optoelectronic devices. The unique photonic and electronic properties of these solution-processable materials brought them to the forefront of materials science. However, the toxicity and instability of lead-based perovskites are the major hurdles for their commercialization. These issues initiated an effort towards the development of environmentally friendly, lead-free perovskites. In this context, bismuth halide perovskites (BHPs) were ideal rivals for lead-based congeners due to their excellent chemical stability, lower toxicity, and structural versatility. Understanding the crystal structure and optoelectronic properties of BHPs is crucial for designing them for specific, tailor-made applications. This Account aims to review our recent research progress on the role of functional organic spacer cations in modulating the electronic confinements, optical properties, and photoconductivity of BHPs. We have employed a comprehensive experimental and theoretical investigation to probe the intriguing optical and electronic properties of these materials. Our findings on the structure-optoelectronic property correlations will be valuable guidelines for the rational selection of organic spacer cations in designing BHPs featuring low exciton binding energy, narrow optical bandgap, enhanced visible light absorption, and high photoconductivity. One of our key findings is that by increasing the electron affinity of the organic spacer ligands, photoconductivity and visible light absorption of BHPs could be significantly enhanced. We hope that the fundamental level understanding of the photophysical properties discussed in this Account will lead to new design rules for developing high-performance BHP materials.

3.
J Phys Chem Lett ; : 5758-5764, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133185

ABSTRACT

Bismuth-based zero-dimensional perovskites garner high research interest because of their advantages, such as excellent moisture stability and lower toxicity in comparison to lead-based congeners. However, the wide optical bandgap (>2 eV) and poor photoconductivity of these materials are the bottlenecks for their optoelectronic applications. Herein, we report a combined experimental and theoretical study of the structural features and optoelectronic properties of two novel and stable zero-dimensional bismuth perovskites: (biphenyl bis(methylammonium))1.5BiI6·2H2O (BPBI) and (naphthalene diimide bis(ethylammonium))1.5BiI6·2H2O (NDBI). NDBI features a remarkably narrower bandgap (1.82 eV) than BPBI (2.06 eV) because of the significant orbital contribution of self-assembled naphthalene diimide cations at the band edges of NDBI. Further, the FP-TRMC analysis revealed that the photoconductivity of NDBI is about 3.7-fold greater than that of BPBI. DFT calculations showed that the enhanced photoconductivity in NDBI arises from its type-IIa band alignment, whereas type-Ib alignment was seen in BPBI.

4.
J Phys Chem Lett ; 11(16): 6757-6762, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32787216

ABSTRACT

Bismuth-based perovskites are attracting intense scientific interest due to low toxicity and excellent moisture stability compared to lead-based analogues. However, high exciton binding energy, poor charge carrier separation, and transport efficiencies lower their optoelectronic performances. To address these issues, we have integrated an electronically active organic cation, naphthalimide ethylammonium, between the [BiI52-]n chains via crystal engineering to form a novel perovskite-like material (naphthalimide ethylammonium)2BiI5 (NBI). Single crystal analysis revealed a one-dimensional quantum-well structure for NBI in which inter-inorganic well electronic coupling is screened by organic layers. It exhibited anisotropic photoconductivity and long-lived charge carriers with milliseconds lifetime, which is higher than that of CH3NH3PbI3. Density functional theory calculations confirmed type-IIa band alignment between organic cations and inorganic chains, allowing the former to electronically contribute to the overall charge transport properties of the material.

5.
ACS Omega ; 2(9): 5798-5802, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-31457838

ABSTRACT

Symmetrical electrochemical capacitors are attracting immense attention because of their fast charging-discharging ability, high energy density, and low cost of production. The current research in this area is mainly focused on exploring novel low-cost electrode materials with higher energy and power densities. In the present work, we fabricated an electrochemical double-layer capacitor using methylammonium bismuth iodide (CH3NH3)3Bi2I9, a lead-free, zero-dimensional hybrid perovskite material. A maximum areal capacitance of 5.5 mF/cm2 was obtained, and the device retained 84.8% of its initial maximum capacitance even after 10 000 charge-discharge cycles. Impedance spectroscopy measurements revealed that the active layer provides a high surface area for the electrolyte to access. As a result, the charge transport resistance is reasonably low, which is advantageous for delivering excellent performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...