Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Polymers (Basel) ; 16(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201675

ABSTRACT

Polyvinyl butyral (PVB) is widely used as an interlayer material in laminated glass applications, mainly in the automotive industry, but also for construction and photovoltaic applications. Post-consumed laminated glass is a waste that is mainly landfilled; nevertheless, it can be revalorized upon efficient separation and removal of adhered glass. PVB interlayers in laminated glass are always plasticized with a significant fraction in the 20-40% w/w range of plasticizer, and they are protected from the environment by two sheets of glass. In this work, the aim is to develop a thorough characterization strategy for PVB films. Neat reference PVB grades intended for interlayer use are compared with properly processed (delaminated) post-consumed PVB grades from the automotive and construction sectors. Methods are developed to open opportunities for recycling and reuse of the latter. The plasticizer content and chemical nature are determined by applying well-known analytical techniques, namely, FT-IR, TGA, NMR. The issue of potential aging during the life cycle of the original laminated material is also addressed through NMR. Based on the findings, a sensor capable of directly sorting PVB post-consumer materials will be developed and calibrated at a later stage.

4.
JACS Au ; 1(11): 1996-2008, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-35574041

ABSTRACT

Kinetics-based differences in the early stage fragmentation of two structurally analogous silica-supported hafnocene- and zirconocene-based catalysts were observed during gas-phase ethylene polymerization at low pressures. A combination of focused ion beam-scanning electron microscopy (FIB-SEM) and nanoscale infrared photoinduced force microscopy (IR PiFM) revealed notable differences in the distribution of the support, polymer, and composite phases between the two catalyst materials. By means of time-resolved probe molecule infrared spectroscopy, correlations between this divergence in morphology and the kinetic behavior of the catalysts' active sites were established. The rate of polymer formation, a property that is inherently related to a catalyst's kinetics and the applied reaction conditions, ultimately governs mass transfer and thus the degree of homogeneity achieved during support fragmentation. In the absence of strong mass transfer limitations, a layer-by-layer mechanism dominates at the level of the individual catalyst support domains under the given experimental conditions.

5.
J Synchrotron Radiat ; 27(Pt 6): 1741-1752, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147203

ABSTRACT

THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser-based Jupyter notebook framework. It aims to provide an interactive and user-friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on-the-fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user-defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider-based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising-edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R-factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.

6.
J Phys Chem Lett ; 11(14): 5632-5637, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32584046

ABSTRACT

In the field of Ziegler-Natta catalysis for olefin polymerization, carbon monoxide (CO) is used in the industrial practice to quench the reaction when it proceeds too fast, approaching critical levels for the plant safety. The quenching effect is explained as due to the reversible coordination of CO to the titanium active sites, but no direct evidence has been ever reported. In this work, we designed a series of experiments to monitor CO adsorption at variable temperatures on a model Ziegler-Natta catalyst by means of FT-IR spectroscopy. For the first time, we have been able to spectroscopically detect CO coordinated to alkylated Ti3+ sites and the Ti-acyl species formed upon the subsequent insertion of CO into the Ti3+-alkyl bond, both in the absence and in the presence of the olefin monomer. In perspective, this has important implications for the characterization of the active sites in industrial Ziegler-Natta catalysts, even under working conditions.

7.
Chemphyschem ; 19(20): 2662-2671, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30051629

ABSTRACT

Ziegler-Natta catalysts for olefin polymerization are intrinsically complex multi-component systems. The genesis of the active sites involves several simultaneous and sequential steps, making the individual steps and interconnections difficult to be unraveled in an unambiguous manner. In this work, we combine X-ray diffraction and spectroscopy to probe each step of the birth and life of a MgCl2 -based Ziegler-Natta catalyst, namely the formation of high surface area MgCl2 by dealcoholation of an alcoholate precursor, the TiCl4 grafting, and the subsequent activation by triethylaluminum as co-catalyst. The so-prepared catalyst was tested towards ethylene polymerization, leading to the production of mainly crystalline high-density polyethylene. The use of operando characterization techniques allowed probing the transient details that are difficult to be dissected in the aftermath, but can radically affect the overall catalytic process.

8.
J Am Chem Soc ; 139(47): 17064-17073, 2017 11 29.
Article in English | MEDLINE | ID: mdl-28826217

ABSTRACT

Operando-sensitive spectroscopic techniques were employed for investigating the changes in the molecular structure of the Cr sites in the CrVI/SiO2 Phillips catalyst during ethylene polymerization. Practically, the most arduous barrier to be overcome was the separation of the chromates reduction carried out by ethylene from the subsequent polymerization. By carefully tuning the experimental parameters we succeeded in observing these two events separately. We found that the sites involved in ethylene polymerization are mainly divalent Cr ions in a 6-fold coordination, in interaction with the oxygenated byproduct (mostly methylformate, generated from the disproportionation of two formaldehyde molecules). Unreduced CrVI species are also present during ethylene polymerization as well as reduced Cr species (either CrII or CrIII) acting as spectators. Our results challenge the old vision of "naked" chromium species (i.e., low coordinated) as the active sites and attribute a fundamental role to external (and flexible) oxygenated ligands that resemble the ancillary ligands in homogeneous polymerization catalysis.

9.
Angew Chem Int Ed Engl ; 55(37): 11203-6, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27439690

ABSTRACT

An original step-by-step approach to synthesize and characterize a bifunctional heterogeneous catalyst consisting of isolated Ti(3+) centers and strong Lewis acid Al(3+) sites on the surface of a chlorinated alumina has been devised. A wide range of physicochemical and spectroscopic techniques were employed to demonstrate that the two sites, in close proximity, act in a concerted fashion to synergistically boost the conversion of ethylene into branched polyethylene, using ethylene as the only feed and without any activator. The coordinatively unsaturated Al(3+) ions promote ethylene oligomerization through a carbocationic mechanism and activate the Ti(3+) sites for the traditional ethylene coordination polymerization.

SELECTION OF CITATIONS
SEARCH DETAIL
...