Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2019: 1046504, 2019.
Article in English | MEDLINE | ID: mdl-30881586

ABSTRACT

The large amount of cauliflower industry waste represents an unexplored source of bioactive compounds. In this work, peptide hydrolysates from cauliflower leaves were characterized by combined bioanalytical approaches. Twelve peptide fractions were studied to evaluate unexplored biological activities by effect-based cellular bioassays. A potent inhibition of intracellular xanthine oxidase activity was observed in human vascular endothelial cells treated with one fraction, with an IC50 = 8.3 ± 0.6 µg/ml. A different fraction significantly induced the antioxidant enzyme superoxide dismutase 1 and decreased the tumor necrosis factor α-induced VCAM-1 expression, thus leading to a significant improvement in the viability of human vascular endothelial cells. Shotgun peptidomics and bioinformatics were used to retrieve the most probable bioactive peptide sequences. Our study shows that peptides from cauliflower waste should be recycled for producing valuable products useful for the prevention of endothelial dysfunction linked to atherogenesis progression.


Subject(s)
Brassica/chemistry , Peptides/therapeutic use , Xanthine Oxidase/chemistry , Endothelial Cells , Humans , Peptides/pharmacology
2.
Mol Biosyst ; 10(11): 2815-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25132011

ABSTRACT

Here we introduce a proteomics methodology based on nanoliquid-chromatography tandem mass spectrometry (nanoLC/MS-MS) to investigate the "protein corona effect for targeted drug delivery", an innovative strategy, which exploits the "protein corona" that forms around nanoparticles in a physiological environment to target cells.


Subject(s)
Blood Proteins/isolation & purification , Chromatography, Liquid/methods , Liposomes/pharmacology , Proteomics/methods , Tandem Mass Spectrometry/methods , Adult , Blood Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Liposomes/metabolism , Polyethylene Glycols/chemistry , Young Adult
3.
J Mater Chem B ; 2(42): 7419-7428, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-32261967

ABSTRACT

As soon as nanomaterials, such as nanoparticles (NPs), are injected into a physiological environment a rich coating of biomolecules known as the "protein corona" rapidly covers them. This protein dress is the main factor, which affects the interaction of NPs with living systems. While the relationship between NP features and the biomolecule corona has been extensively investigated, whether and how changes in the physiological environment affect the NP-protein corona remains under-investigated. This is one of the most important steps in translating results in animal models to the clinic. Here we investigated thoroughly the biological identity of lipid NPs (size, charge, aggregation state and composition of the corona) after incubation with human plasma (HP) and mouse plasma (MP) by dynamic light scattering, micro-electrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC/MS-MS). Specifically, we used two different liposomal formulations: the first one was made of polyethyleneglycol (PEG)-coated 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), while the second one was made of 30% of DOTAP, 50% of neutral saturated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 20% cholesterol. The temporal evolution and complexity of the NP-protein corona was found to be strongly dependent on the biological environment. In MP, liposomes were more negatively charged, less enriched in opsonins and appreciably more enriched in apolipoproteins than their counterparts in HP. Collectively, our results suggest that the biological identities of NPs in mice and humans can be markedly different from each other. Relevance of results to in vivo applications is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...