Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38337316

ABSTRACT

The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.

2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396645

ABSTRACT

Tissue engineering is an interdisciplinary field that develops new methods to enhance the regeneration of damaged tissues, including those of wounds. Polymer systems containing bioactive molecules can play an important role in accelerating tissue regeneration, mitigating inflammation process, and fighting bacterial infection. Chitosan (CS) has attracted much attention regarding its use in wound healing system fabrication thanks to its biocompatibility, biodegradability, and the presence of functional groups in its structure. In this work, bioactive chitosan-based membranes were obtained by both chemical and physical modifications of the polymer with glycidyl methacrylate and glycerol (GLY), respectively. The most suitable GLY concentration to obtain wound healing systems with good elongation at break, a good water vapor transmission rate (WVTR), and good wettability values was 20% (w/w). Afterwards, the membranes were crosslinked with different concentrations of ethylene glycol dimethacrylate (EGDMA). By using a concentration of 0.05 mM EGDMA, membranes with a contact angle and WVTR values suitable for the application were obtained. To make the system bioactive, 3,4-dihydrocinnamic acid (HCAF) was introduced into the membranes, either by imbibition or chemical reaction, using laccase as a catalyst. Thermal and mechanical analyses confirmed the formation of a cohesive network, which limited the plasticizing effect of GLY, particularly when HCAF was chemically bound. The HCAF-imbibed membrane showed a good antioxidant and antimicrobial activity, highlighting the potential of this system for the treatment of wound healing.


Subject(s)
Anti-Infective Agents , Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Wound Healing , Polymers/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Carbohydr Polym ; 327: 121684, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171693

ABSTRACT

The replacement and regeneration of biological tissues by fabricating three-dimensional functionalized constructs that can improve material interaction with cells is an important challenge of tissue engineering. In this study, bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes (PECs) were fabricated by freeze-drying method and then crosslinked with CaCl2. Various chitosan-alginate (CS-AL) molar ratios were used to obtain PECs with different structural and mechanical properties. The CS1-AL2.3 scaffold showed to possess the best mechanical properties (8 MPa) and good pore morphology with an average size of 100-150 µm. After the crosslinking process, a less porous structure but with higher elastic modulus (30 MPa) was obtained. To make matrix bioactive and biomimetic, the CS1-AL2.3 system was first functionalized with 3,4-dihydroxyhydrocinnamic acid (HCAF) and then with PySO3 or Heparin to introduce groups/molecules mimicking the extracellular matrix. While the antioxidant properties of the scaffolds containing HCAF improved by 3 orders of magnitude, compared to the non-functionalized matrix, the introduction of sulfonic groups into the bioactive scaffold made the structure more porous and hydrophilic with respect to the heparinized one also favoring the penetration and proliferation of fibroblasts into the scaffold. These results indicate the potential of these novel systems for tissue engineering.


Subject(s)
Chitosan , Tissue Engineering , Tissue Engineering/methods , Chitosan/chemistry , Tissue Scaffolds/chemistry , Polyelectrolytes , Alginates/chemistry , Biomimetics , Porosity , Cell Proliferation
4.
Polymers (Basel) ; 15(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514516

ABSTRACT

Recycling of agro-industrial waste is one of the major issues addressed in recent years aimed at obtaining products with high added value as a future alternative to traditional ones in the per-spective of a bio-based and circular economy. One of the most produced wastes is rice husk and it is particularly interesting because it is very rich in silica, a material with a high intrinsic value. In the present study, a method to extract silica from rice husk ash (RHA) and to use it as a carrier for the immobilization of laccase from Trametes versicolor was developed. The obtained mesoporous nano-silica was characterized by X-ray diffraction (XRD), ATR-FTIR spectroscopy, Scanning Elec-tron Microscopy (SEM), and Energy Dispersive X-ray spectroscopy (EDS). A nano-silica purity of about 100% was found. Nano-silica was then introduced in a cross-linked chitosan/alginate scaffold to make it more easily recoverable after reuse. To favor laccase immobilization into the composite scaffold, functionalization of the nano-silica with (γ-aminopropyl) triethoxysilane (APTES) was performed. The APTES/RHA nano-silica/chitosan/alginate (ARCA) composite al-lowed to obtain under mild conditions (pH 7, room temperature, 1.5 h reaction time) a robust and easily reusable solid biocatalyst with 3.8 U/g of immobilized enzyme which maintained 50% of its activity after six reuses. The biocatalytic system, tested for syringic acid bioremediation, was able to totally oxidize the contaminant in 24 h.

5.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430814

ABSTRACT

Nanoparticle (NP) drug delivery systems are known to potentially enhance the efficacy of therapeutic agents. As for antimicrobial drugs, therapeutic solutions against drug-resistant microbes are urgently needed due to the worldwide antimicrobial resistance issue. Usnic acid is a widely investigated antimicrobial agent suffering from poor water solubility. In this study, polymer nanoparticles based on polyglycerol adipate (PGA) grafted with polycaprolactone (PCL) were developed as carriers for usnic acid. We demonstrated the potential of the developed systems in ensuring prolonged bactericidal activity against a model bacterial species, Staphylococcus epidermidis. The macromolecular architecture changes produced by PCL grafted from PGA significantly influenced the drug release profile and mechanism. Specifically, by varying the length of PCL arms linked to the PGA backbone, it was possible to tune the drug release from a burst anomalous drug release (high PCL chain length) to a slow diffusion-controlled release (low PCL chain length). The developed nanosystems showed a prolonged antimicrobial activity (up to at least 7 days) which could be used in preventing/treating infections occurring at different body sites, including medical device-related infection and mucosal/skin surface, where Gram-positive bacteria are commonly involved.


Subject(s)
Anti-Infective Agents , Nanoparticles , Adipates , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Polymers , Staphylococcus epidermidis
6.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361980

ABSTRACT

The development of low-cost and eco-friendly materials for the removal of pollutants from water is one of the main modern challenges. For this purpose, molecularly imprinted polymers were prepared under optimized conditions starting from chitosan (CS), chemically or ionically modified with glycidyl methacrylate (GMA) or itaconic acid (ITA), respectively. 2,4-Dichlorophenoxyacetic acid (2,4-D) was used as a template, obtaining the CS_GMA and CS_ITA series. The influence of the template concentration on the MIPs' (molecularly imprinted polymers) morphology, thermal behaviour and swelling ability, as well as on the 2,4-D removal capacity, were analyzed. The amount of the template used for the imprinting, together with the different permeability of the matrices, were the key factors driving the analyte uptake process. Despite the good performance shown by the non-imprinted CS_GMA sample, the best results were obtained when CS_GMA was imprinted with the highest amount (5%) of template (CS_GMA_5). This system was also more efficient when consecutive adsorption experiments were carried out. In addition, CS_GMA_5 had a desorption efficiency of 90-100% when a low pesticide concentration was used. These findings suggest that the presence of imprinted cavities could be useful in improving the performance of sorbent materials making CS_GMA_5 a possible candidate for 2,4-D removal.


Subject(s)
Chitosan , Herbicides , Molecular Imprinting , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Adsorption , Phenoxyacetates , 2,4-Dichlorophenoxyacetic Acid
7.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36012758

ABSTRACT

This article focuses on the study related to the estimation of packaging material properties of cellulose-wax nanocomposite using molecular dynamics simulation (MDS). Cellulose based packaging material is gaining lot of importance due to its good material properties and low cost. Cellulose with small amount of plant-derived wax (nonacosane-10-ol and nonacosane-5,10-diol) offers higher mechanical strength and modulus of elasticity compared to the conventional synthetic polymer materials. In this article, in addition to the estimation of mechanical properties, the thermal stability of the proposed ecofriendly cellulose-wax composite is evaluated by estimating the glass transition temperature which essentially provides critical information on the glassy state and rubbery state of this biopolymer. The glass transition temperature of this composite changes significantly compared to that of pure cellulose (which also suffers from poor mechanical strength). Transport properties such as diffusion volume and diffusion coefficient of oxygen, nitrogen, and water are estimated using the results obtained from MDS. The diffusion coefficients of these species within the cellulose-wax composite are analyzed using the diffusion volume and interaction energies of these constituents with the wax and cellulose.


Subject(s)
Cellulose , Nanocomposites , Diffusion , Food Packaging , Temperature , Transition Temperature
8.
Gels ; 8(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36005081

ABSTRACT

Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.

9.
Pharmaceutics ; 14(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35057053

ABSTRACT

Polylactides (PLAs) are a class of polymers that are very appealing in biomedical applications due to their degradability in nontoxic products, tunable structural, and mechanical properties. However, they have some drawbacks related to their high hydrophobicity, lack of functional groups able to graft bioactive molecules, and solubility in unsafe solvents. To circumvent these shortcomings, porous scaffolds for tissue engineering were prepared by vigorously mixing a solution of isotactic and atactic PLA in nontoxic ethyl acetate at 70 °C with a water solution of choline taurinate. The partial aminolysis of the polymer ester bonds by taurine -NH2 brought about the formation of PLA oligomers with surfactant activity that stabilized the water-in-oil emulsion. Upon drying, a negligible shrinking occurred, and mechanically stable porous scaffolds were obtained. By varying the polymer composition and choline taurinate concentration, it was possible to modulate the pore dimensions (30-50 µm) and mechanical properties (Young's moduli: 1-6 MPa) of the samples. Furthermore, the grafted choline taurinate made the surface of the PLA films hydrophilic, as observed by contact angle measurements (advancing contact angle: 76°; receding contact angle: 40°-13°). The preparation method was very simple because it was based on a one-pot mild reaction that did not require an additional purification step, as all the employed chemicals were nontoxic.

10.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445079

ABSTRACT

Solid-phase extraction (SPE) coupled to LC/MS/MS analysis is a valid approach for the determination of organic micropollutants (OMPs) in liquid samples. To remove the greatest number of OMPs from environmental matrices, the development of innovative sorbent materials is crucial. Recently, much attention has been paid to inorganic nanosystems such as graphite-derived materials. Graphene oxide has been employed in water-purification processes, including the removal of several micropollutants such as dyes, flame retardants, or pharmaceutical products. Polysaccharides have also been widely used as convenient media for the dispersion of sorbent materials, thanks to their unique properties such as biodegradability, biocompatibility, nontoxicity, and low cost. In this work, chitosan-graphene oxide (CS_GO) composite membranes containing different amounts of GO were prepared and used as sorbents for the SPE of pesticides. To improve their dimensional stability in aqueous medium, the CS_GO membranes were surface crosslinked with glutaraldehyde. The composite systems were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, swelling degree, contact angle, and mechanical measurements. As the GO content increased, a decrease in surface homogeneity, an improvement of mechanical properties, and a reduction of thermal stability of the CS-based membranes were observed. The increased dimensional stability in water, together with the presence of high GO amounts, made the prepared composite membranes more efficacious than the ones based just on CS in isolating and preconcentrating different hydrophilic/hydrophobic pollutants.


Subject(s)
Chitosan/chemistry , Graphite/chemistry , Membranes, Artificial , Pesticides/isolation & purification , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/isolation & purification , Chromatography, High Pressure Liquid , Pesticides/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry , Water/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL