Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 11(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952228

ABSTRACT

Single-cell analysis is of critical importance in revealing cell-to-cell heterogeneity by characterizing individual cells and identifying minority sub-populations of interest. Droplet-based microfluidics has been widely used in the past decade to achieve high-throughput single-cell analysis. However, to maximize the proportion of single-cell emulsification is challenging due to cell sedimentation and aggregation. The purpose of this study was to investigate the influence of single-cell encapsulation and incubation through the use of neutral buoyancy. As a proof of concept, OptiPrep™ was used to create neutrally buoyant cell suspensions of THP-1, a human monocytic leukemia cell line, for single-cell encapsulation and incubation. We found that using a neutrally buoyant suspension greatly increased the efficiency of single-cell encapsulation in microdroplets and eliminated unnecessary cell loss. Moreover, the presence of OptiPrep™ was shown to not affect cellular viability. This method significantly improved the effectiveness of single-cell study in a non-toxic environment and is expected to broadly facilitate single-cell analysis.

2.
Phys Med Biol ; 57(6): 1701-15, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22398359

ABSTRACT

We objectively evaluate a straightforward registration method for correcting respiration-induced movement of abdominal organs in CT perfusion studies by measuring the distributions of alignment errors between corresponding landmark pairs. We introduce the concept and describe the advantages of using the surface-normal component of distance between pairs of corresponding landmarks selected so that their surface normal is in one of the three coordinate axis directions, and show that such landmarks can be precisely placed with respect to the surface normal. Using a large population of landmark pairs on a substantial quantity of 4D dynamic contrast-enhanced CT volume data, we quantify the average alignment errors of abdominal organs that remain uncorrected by registration.


Subject(s)
Four-Dimensional Computed Tomography/statistics & numerical data , Biophysical Phenomena , Contrast Media , Databases, Factual , Humans , Movement , Observer Variation , Radiography, Abdominal/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...