Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Article in English | MEDLINE | ID: mdl-38317751

ABSTRACT

Background: Multiple pharmacological interventions and modalities are available for managing chronic idiopathic constipation (CIC), with variable efficacy. Vibrating capsule (VC) is a device that has shown variable results in alleviating constipation by tactile stimulation of the colonic wall and inducing peristalsis. This meta-analysis is to investigate the efficacy and safety of this modality. Methods: Comprehensive literature search was performed through June 14th, 2023, on databases including Embase, PubMed/MEDLINE, Cochrane Central, Web of Science, Global Index Medicus, and Google Scholar. Core concepts of VC, constipation, and bowel movement were searched. The DerSimonian-Laird method and random effects model were utilized. We calculated odds ratio (OR) and mean difference (MD) for proportional and continuous variables, respectively, with 95% confidence interval (CI) and a P value of <0.05 considered statistically significant. Results: The search strategy yielded 117 articles. Four studies with 705 total patients were finalized comparing VC to placebo/sham treatment. The pooled complete spontaneous bowel movement (CSBM), defined as bowel movement without use of laxatives within the last 48 hours with sense of complete evacuation did not achieve statistical improvement with VC (MD =0.153; 95% CI: -0.218 to 0.523; P=0.422). However, spontaneous bowel movement (SBM), defined as bowel movement without use of laxatives within the last 48 hours, showed statistical improvement with VC (MD =0.159; 95% CI: 0.095 to 0.223; P<0.001). VC didn't show an increase in pooled adverse events (OR =1.431; 95% CI: 0.702 to 2.916; P=0.324). Conclusions: The systematic review and meta-analysis suggest that VC is safe and efficacious in some outcomes, however, larger randomized controlled trials (RCTs) and real-world data are needed to establish this.

2.
Neurosci Lett ; 824: 137675, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38355003

ABSTRACT

The rapid evolution of different imaging modalities in the last two decades has enabled the investigation of the role of different genes in development and disease to be studied in a range of model organisms. However, selection of the appropriate imaging technique depends on a number of constraints, including cost, time, image resolution, size of the sample, computational complexity and processing power. Here, we use the adult mouse central nervous system to investigate whether High-Resolution Episcopic Microscopy (HREM) can provide an effective means to study the volume of individual subregions within the brain. We find that HREM can provide precise volume quantification of different structures within the mouse brain, albeit with limitations regarding the time involved for analysis and the necessity of some estimations.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Mice , Animals , Microscopy/methods , Imaging, Three-Dimensional/methods
3.
Brief Funct Genomics ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183207

ABSTRACT

Metastatic melanoma originates from melanocytes of the skin. Melanoma metastasis results in poor treatment prognosis for patients and is associated with epigenetic and transcriptional changes that reflect the developmental program of melanocyte differentiation from neural crest stem cells. Several studies have explored melanoma transcriptional heterogeneity using microarray, bulk and single-cell RNA-sequencing technologies to derive data-driven models of the transcriptional-state change which occurs during melanoma progression. No study has systematically examined how different models of melanoma progression derived from different data types, technologies and biological conditions compare. Here, we perform a cross-sectional study to identify averaging effects of bulk-based studies that mask and distort apparent melanoma transcriptional heterogeneity; we describe new transcriptionally distinct melanoma cell states, identify differential co-expression of genes between studies and examine the effects of predicted drug susceptibilities of different cell states between studies. Importantly, we observe considerable variability in drug-target gene expression between studies, indicating potential transcriptional plasticity of melanoma to down-regulate these drug targets and thereby circumvent treatment. Overall, observed differences in gene co-expression and predicted drug susceptibility between studies suggest bulk-based transcriptional measurements do not reliably gauge heterogeneity and that melanoma transcriptional plasticity is greater than described when studies are considered in isolation.

4.
J Cell Sci ; 136(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37921122

ABSTRACT

The covalent modification of histones is critical for many biological functions in mammals, including gene regulation and chromatin structure. Posttranslational histone modifications are added and removed by specialised 'writer' and 'eraser' enzymes, respectively. One such writer protein implicated in a wide range of cellular processes is SET domain-containing 2 (SETD2), a histone methyltransferase that catalyses the trimethylation of lysine 36 on histone H3 (H3K36me3). Recently, SETD2 has also been found to modify proteins other than histones, including actin and tubulin. The emerging roles of SETD2 in the development and function of the mammalian central nervous system (CNS) are of particular interest as several SETD2 variants have been implicated in neurodevelopmental disorders, such as autism spectrum disorder and the overgrowth disorder Luscan-Lumish syndrome. Here, we summarise the numerous roles of SETD2 in mammalian cellular functions and development, with a focus on the CNS. We also provide an overview of the consequences of SETD2 variants in human disease and discuss future directions for understanding essential cellular functions of SETD2.


Subject(s)
Autism Spectrum Disorder , Histones , Animals , Humans , Histones/metabolism , Autism Spectrum Disorder/genetics , Methylation , Chromatin , Central Nervous System/metabolism , Mammals/metabolism
5.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37449901

ABSTRACT

MOTIVATION: Identification of cell types using single-cell RNA-seq is revolutionizing the study of multicellular organisms. However, typical single-cell RNA-seq analysis often involves post hoc manual curation to ensure clusters are transcriptionally distinct, which is time-consuming, error-prone, and irreproducible. RESULTS: To overcome these obstacles, we developed Cytocipher, a bioinformatics method and scverse compatible software package that statistically determines significant clusters. Application of Cytocipher to normal tissue, development, disease, and large-scale atlas data reveals the broad applicability and power of Cytocipher to generate biological insights in numerous contexts. This included the identification of cell types not previously described in the datasets analysed, such as CD8+ T cell subtypes in human peripheral blood mononuclear cells; cell lineage intermediate states during mouse pancreas development; and subpopulations of luminal epithelial cells over-represented in prostate cancer. Cytocipher also scales to large datasets with high-test performance, as shown by application to the Tabula Sapiens Atlas representing >480 000 cells. Cytocipher is a novel and generalizable method that statistically determines transcriptionally distinct and programmatically reproducible clusters from single-cell data. AVAILABILITY AND IMPLEMENTATION: The software version used for this manuscript has been deposited on Zenodo (https://doi.org/10.5281/zenodo.8089546), and is also available via github (https://github.com/BradBalderson/Cytocipher).


Subject(s)
Algorithms , Gene Expression Profiling , Animals , Mice , Humans , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Leukocytes, Mononuclear , Single-Cell Gene Expression Analysis , Single-Cell Analysis , Software
6.
Res Sq ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333134

ABSTRACT

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

7.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283649

ABSTRACT

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
Cells ; 11(15)2022 08 02.
Article in English | MEDLINE | ID: mdl-35954220

ABSTRACT

Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix-/-) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix-/- mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix-/- and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix-/- mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.


Subject(s)
Ependyma , Hydrocephalus , NFI Transcription Factors , Animals , Cell Physiological Phenomena , Hydrocephalus/genetics , Lateral Ventricles , Mice , NFI Transcription Factors/genetics , Neuroglia
9.
Biol Psychiatry ; 92(8): 614-625, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35662507

ABSTRACT

Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.


Subject(s)
Neurodevelopmental Disorders , Ubiquitinated Proteins , Deubiquitinating Enzymes/genetics , Humans , Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
10.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35698786

ABSTRACT

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Subject(s)
RNA, Transfer , Saccharomyces cerevisiae Proteins , Animals , Mice , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
11.
Biol Reprod ; 106(6): 1191-1205, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35243487

ABSTRACT

Members of the nuclear factor I (NFI) family are key regulators of stem cell biology during development, with well-documented roles for NFIA, NFIB, and NFIX in a variety of developing tissues, including brain, muscle, and lung. Given the central role these factors play in stem cell biology, we posited that they may be pivotal for spermatogonial stem cells or further developing spermatogonia during testicular development. Surprisingly, in stark contrast to other developing organ systems where NFI members are co-expressed, these NFI family members show discrete patterns of expression within the seminiferous tubules. Sertoli cells (spermatogenic supporting cells) express NFIA, spermatocytes express NFIX, round spermatids express NFIB, and peritubular myoid cells express each of these three family members. Further analysis of NFIX expression during the cycle of the seminiferous epithelium revealed expression not in spermatogonia, as we anticipated, but in spermatocytes. These data suggested a potential role for NFIX in spermatogenesis. To investigate, we analyzed mice with constitutive deletion of Nfix (Nfix-null). Assessment of germ cells in the postnatal day 20 (P20) testes of Nfix-null mice revealed that spermatocytes initiate meiosis, but zygotene stage spermatocytes display structural defects in the synaptonemal complex, and increased instances of unrepaired DNA double-strand breaks. Many developing spermatocytes in the Nfix-null testis exhibited multinucleation. As a result of these defects, spermatogenesis is blocked at early diplotene and very few round spermatids are produced. Collectively, these novel data establish the global requirement for NFIX in correct meiotic progression during the first wave of spermatogenesis.


Subject(s)
NFI Transcription Factors , Spermatogonia , Testis , Animals , Male , Meiosis , Mice , Mice, Knockout , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Spermatocytes/metabolism , Spermatogenesis/genetics , Testis/metabolism
12.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35245348

ABSTRACT

The hypothalamus displays staggering cellular diversity, chiefly established during embryogenesis by the interplay of several signalling pathways and a battery of transcription factors. However, the contribution of epigenetic cues to hypothalamus development remains unclear. We mutated the polycomb repressor complex 2 gene Eed in the developing mouse hypothalamus, which resulted in the loss of H3K27me3, a fundamental epigenetic repressor mark. This triggered ectopic expression of posteriorly expressed regulators (e.g. Hox homeotic genes), upregulation of cell cycle inhibitors and reduced proliferation. Surprisingly, despite these effects, single cell transcriptomic analysis revealed that most neuronal subtypes were still generated in Eed mutants. However, we observed an increase in glutamatergic/GABAergic double-positive cells, as well as loss/reduction of dopamine, hypocretin and Tac2-Pax6 neurons. These findings indicate that many aspects of the hypothalamic gene regulatory flow can proceed without the key H3K27me3 epigenetic repressor mark, but points to a unique sensitivity of particular neuronal subtypes to a disrupted epigenomic landscape.


Subject(s)
Embryonic Development/physiology , Hypothalamus/physiology , Neurons/physiology , Polycomb Repressive Complex 2/genetics , Polycomb-Group Proteins/genetics , Animals , Cell Proliferation/genetics , Epigenetic Repression/genetics , Female , Male , Mice , Mutation/genetics , Transcriptome/genetics
13.
Sci Rep ; 12(1): 40, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997023

ABSTRACT

The generation of new neurons within the mammalian forebrain continues throughout life within two main neurogenic niches, the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subependymal zone (SEZ) lining the lateral ventricles. Though the SEZ is the largest neurogenic niche in the adult human forebrain, our understanding of the mechanisms regulating neurogenesis from development through aging within this region remains limited. This is especially pertinent given that neurogenesis declines dramatically over the postnatal lifespan. Here, we performed transcriptomic profiling on the SEZ from human post-mortem tissue from eight different life-stages ranging from neonates (average age ~ 2 months old) to aged adults (average age ~ 86 years old). We identified transcripts with concomitant profiles across these decades of life and focused on three of the most distinct profiles, namely (1) genes whose expression declined sharply after birth, (2) genes whose expression increased steadily with age, and (3) genes whose expression increased sharply in old age in the SEZ. Critically, these profiles identified neuroinflammation as becoming more prevalent with advancing age within the SEZ and occurring with time courses, one gradual (starting in mid-life) and one sharper (starting in old age).


Subject(s)
Aging/genetics , Aging/metabolism , Ependyma/metabolism , Gene Expression Regulation/physiology , Inflammation/genetics , Inflammation/metabolism , Neurogenesis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Middle Aged , Transcriptome , Young Adult
14.
J Invest Dermatol ; 142(7): 1845-1857, 2022 07.
Article in English | MEDLINE | ID: mdl-34958806

ABSTRACT

Phenotypic plasticity drives cancer progression, impacts treatment response, and is a major driver of therapeutic resistance. In melanoma, a regulatory axis between the MITF and BRN2 transcription factors has been reported to promote tumor heterogeneity by mediating switching between proliferative and invasive phenotypes, respectively. Despite strong evidence that subpopulations of cells that exhibit a BRN2high/MITFlow expression profile switch to a predominantly invasive phenotype, the mechanisms by which this switch is propagated and promotes invasion remain poorly defined. We have found that a reciprocal relationship between BRN2 and NOTCH1/2 signaling exists in melanoma cells in vitro, within patient datasets, and in in vivo primary and metastatic human tumors that bolsters acquisition of invasiveness. Working through the epigenetic modulator EZH2, the BRN2‒NOTCH1/2 axis is potentially a key mechanism by which the invasive phenotype is maintained. Given the emergence of agents targeting both EZH2 and NOTCH, understanding the mechanism through which BRN2 promotes heterogeneity may provide crucial biomarkers to predict treatment response to prevent metastasis.


Subject(s)
Homeodomain Proteins , Melanoma , POU Domain Factors , Receptor, Notch1 , Receptor, Notch2 , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Neoplasm Invasiveness/genetics , POU Domain Factors/genetics , Receptor, Notch1/genetics , Receptor, Notch2/genetics
15.
PLoS Genet ; 17(10): e1009334, 2021 10.
Article in English | MEDLINE | ID: mdl-34710087

ABSTRACT

Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3ß/ß-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3ß. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.


Subject(s)
Cell Cycle Proteins/metabolism , Neocortex/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Carcinogenesis/metabolism , Cells, Cultured , Cytokinesis/physiology , Homozygote , Humans , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Phenotype
16.
BMC Res Notes ; 14(1): 269, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256843

ABSTRACT

OBJECTIVE: Sulfation is an essential physiological process that regulates the function of a wide array of molecules involved in brain development. We have previously shown expression levels for the sulfate transporter Slc13a4 to be elevated during postnatal development, and that sulfate accumulation in the brains of Slc13a4+/- mice is reduced, suggesting a role for this transporter during this critical window of brain development. In order to understand the pathways regulated by cellular sulfation within the brain, we performed a bulk RNA-sequencing analysis of the forebrain of postnatal day 20 (P20) Slc13a4 heterozygous mice and wild-type litter mate controls. DATA DESCRIPTION: We performed an RNA transcriptomic based sequencing screen on the whole forebrain from Slc13a4+/- and Slc13a4+/+mice at P20. Differential expression analysis revealed 90 differentially regulated genes in the forebrain of Slc13a4+/- mice (a p-value of 0.1 was considered as significant). Of these, 55 were upregulated, and 35 were downregulated in the forebrain of heterozygous mice. Moreover, when we stratified further with a ± 1.2 fold-change, we observed 38 upregulated, and 16 downregulated genes in the forebrain of heterozygous mice. This resource provides a useful tool to interrogate which pathways may require elevated sulfate levels to drive normal postnatal development of the brain.


Subject(s)
Symporters , Animals , Gene Expression Profiling , Mice , Prosencephalon/metabolism , Sulfate Transporters , Symporters/genetics , Transcriptome
17.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34128986

ABSTRACT

The balance between stem cell potency and lineage specification entails the integration of both extrinsic and intrinsic cues, which ultimately influence gene expression through the activity of transcription factors. One example of this is provided by the Hippo signalling pathway, which plays a central role in regulating organ size during development. Hippo pathway activity is mediated by the transcriptional co-factors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which interact with TEA domain (TEAD) proteins to regulate gene expression. Although the roles of YAP and TAZ have been intensively studied, the roles played by TEAD proteins are less well understood. Recent studies have begun to address this, revealing that TEADs regulate the balance between progenitor self-renewal and differentiation throughout various stages of development. Furthermore, it is becoming apparent that TEAD proteins interact with other co-factors that influence stem cell biology. This Primer provides an overview of the role of TEAD proteins during development, focusing on their role in Hippo signalling as well as within other developmental, homeostatic and disease contexts.


Subject(s)
Disease Susceptibility , Embryonic Development , Gene Expression Regulation, Developmental , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeostasis , Humans , Molecular Targeted Therapy , Organ Specificity , Regeneration , Species Specificity , Stem Cells/cytology , Stem Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Vertebrates
18.
Mol Psychiatry ; 26(11): 6880-6895, 2021 11.
Article in English | MEDLINE | ID: mdl-34059796

ABSTRACT

Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days-103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29-32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.


Subject(s)
Neural Stem Cells , Schizophrenia , Adult , Child , Humans , Macrophages , Neurogenesis/physiology , Neurons
19.
Nat Commun ; 12(1): 2678, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976153

ABSTRACT

Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Neurodevelopmental Disorders/genetics , Transcriptome/genetics , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Disease Models, Animal , Epigenesis, Genetic , Grooming/physiology , Humans , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , Phenotype , Sf9 Cells , Spodoptera
20.
Exp Neurol ; 342: 113734, 2021 08.
Article in English | MEDLINE | ID: mdl-33945789

ABSTRACT

Disruptions to either sulfate supply or sulfation enzymes can affect brain development and have long-lasting effects on brain function, yet our understanding of the molecular mechanisms governing this are incomplete. Perineuronal nets (PNNs) are highly sulfated, specialized extracellular matrix structures that regulate the maturation of synaptic connections and neuronal plasticity. We have previously shown that mice heterozygous for the brain sulfate transporter Slc13a4 have abnormal social interactions, memory, exploratory behaviors, stress and anxiety of postnatal origin, pointing to potential deficits in PNN biology, and implicate SLC13A4 as a critical factor required for regulating normal synaptic connectivity and function. Here, we sought to investigate aberrant PNN formation as a potential mechanism contributing to the functional deficits displayed by Slc13a4+/- mice. Following social interactions, we reveal reduced neuronal activation in the somatosensory cortex of Slc13a4+/- mice, and altered inhibitory and excitatory postsynaptic currents. In line with this, we found a reduction in parvalbumin-expressing neurons decorated with PNNs, as well as reduced expression of markers for PNN maturation. Finally, we reveal that postnatal administration of N-acetylcysteine prevented PNN abnormalities from manifesting in Slc13a4+/- adult animals. Collectively, these data highlight a central role for postnatal SLC13A4 in normal PNN formation, circuit function and subsequent animal behavior.


Subject(s)
Acetylcysteine/administration & dosage , Nerve Net/drug effects , Nerve Net/metabolism , Peripheral Nerves/drug effects , Peripheral Nerves/metabolism , Sulfate Transporters/metabolism , Symporters/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Female , Free Radical Scavengers/administration & dosage , Male , Mice , Mice, Inbred C57BL , Somatosensory Cortex/drug effects , Somatosensory Cortex/metabolism , Sulfate Transporters/genetics , Symporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...