Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
iScience ; 26(4): 106310, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950118

ABSTRACT

Germinal centers (GCs) are sites where plasma and memory B cells form to generate high-affinity, Ig class-switched antibodies. Specialized stromal cells called follicular dendritic cells (FDCs) are essential for GC formation. During systemic Salmonella Typhimurium (STm) infection GCs are absent, whereas extensive extrafollicular and switched antibody responses are maintained. The mechanisms that underpin the absence of GC formation are incompletely understood. Here, we demonstrate that STm induces a reversible disruption of niches within the splenic microenvironment, including the T and B cell compartments and the marginal zone. Alongside these effects after infection, mature FDC networks are strikingly absent, whereas immature FDC precursors, including marginal sinus pre-FDCs (MadCAM-1+) and perivascular pre-FDCs (PDGFRß+) are enriched. As normal FDC networks re-establish, extensive GCs become detectable throughout the spleen. Therefore, the reorganization of FDC networks and the loss of GC responses are key, parallel features of systemic STm infections.

2.
J Invest Dermatol ; 142(6): 1552-1564.e8, 2022 06.
Article in English | MEDLINE | ID: mdl-34793820

ABSTRACT

Substitution of IgG in antibody deficiency or application of high-dose intravenous IgG in patients with autoimmunity is a well-established treatment. However, data on the mode of action of intravenous IgG are controversial and may differ for distinct diseases. In this study, we investigated the impact and molecular mechanism of high-dose IgG (hd-IgG) treatment in murine autoantibody‒induced skin inflammation, namely, epidermolysis bullosa acquisita. Epidermolysis bullosa acquisita is caused by antibodies directed against type VII collagen and is mediated by complement activation, the release of ROS, and proteases by myeloid cells. In murine experimental epidermolysis bullosa acquisita, the disease can be induced by injection of anti‒type VII collagen IgG. In this study, we substantiate that treatment with hd-IgG improves clinical disease manifestation. Mechanistically, hd-IgG reduced the amount of anti‒type VII collagen in the skin and sera, which is indicative of an FcRn-dependent mode of action. Furthermore, in a nonreceptor-mediated fashion, hd-IgG showed antioxidative properties by scavenging extracellular ROS. Hd-IgG also impaired complement activation and served as a substrate for proteases, both key events during epidermolysis bullosa acquisita pathogenesis. Collectively, the nonreceptor-mediated anti-inflammatory properties of hd-IgG may explain the therapeutic benefit of intravenous IgG treatment in skin autoimmunity.


Subject(s)
Epidermolysis Bullosa Acquisita , Animals , Autoantibodies , Collagen Type VII , Humans , Immunoglobulin G , Mice , Peptide Hydrolases , Reactive Oxygen Species
3.
Front Immunol ; 11: 579000, 2020.
Article in English | MEDLINE | ID: mdl-33162994

ABSTRACT

The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Brain/drug effects , Cell Proliferation/drug effects , Interleukins/antagonists & inhibitors , Microglia/drug effects , Nerve Degeneration , Prion Diseases/drug therapy , Animals , Antibodies, Monoclonal/toxicity , Antibodies, Neutralizing/toxicity , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Disease Models, Animal , Genes, fms , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Prion Diseases/metabolism , Prion Diseases/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction
4.
Arthritis Res Ther ; 22(1): 238, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33050949

ABSTRACT

BACKGROUNDS: The organization of minor salivary glands (MSG) infiltrates, in patients with Sjögren's syndrome (SS), associates with disease severity and progression. Aberrant regulation of lymphocyte autophagy is involved in autoimmunity, and in previous work, we provided the first evidence of upregulated autophagy in CD4+ T cells infiltrating SS MSG. The aim of this study was to further explore autophagy in SS infiltrating and circulating lymphocytes and to investigate its role in disease histopathological progression. METHODS: After collection of 20 SS MSG, the presence of lymphocyte aggregates (foci) and the formation of germinal center (GC)-like structures were observed by H&E and confirmed by immunohistochemistry. The expression of autophagy-related genes, Atg5 and MAP1LC3A, was detected by RT-PCR on microdissected salivary gland tissue and control tonsils. In MSG and tonsils, autophagic lymphocytes were identified by the detection of the autophagosome protein LC3B visualized as LC3 puncta staining by immunofluorescence. Peripheral blood autophagy was assessed by flow cytometry in SS and healthy controls (HC). RESULTS: Real-time PCR demonstrated higher expression in the autophagy genes Atg5 and MAP1LC3A in MSG GCs as compared to both small foci (p = 0.0075, p = 0.0002) and GCs from tonsils (p = 0.0001, p = 0.0037). In MSG, LC3 puncta staining was detectable on both CD3+ and CD20+ lymphocytes; in tonsils, LC3 puncta was almost undetectable on all lymphocytes. Compared to HC (n = 20), flow cytometry did not reveal any increase of autophagy in SS circulating lymphocytes (n = 30). CONCLUSIONS: In SS MSG, lymphocytes' autophagy is a feature of infiltrating T and B cells and is associated with histological severity. Interestingly, in MSG aberrant regulation of autophagy is detectable in GC-like structures possibly indicating its involvement in the development and persistence of the autoimmune process within the lesions.


Subject(s)
Salivary Glands, Minor , Sjogren's Syndrome , Autophagy , Germinal Center , Humans , Salivary Glands
5.
Rheumatology (Oxford) ; 59(1): 165-170, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31274159

ABSTRACT

OBJECTIVES: SS is an autoimmune condition characterized by systemic B-cell activation, autoantibody production and ectopic germinal centres' formation within the salivary gland (SG). The extent of SG infiltrate has been proposed as a biomarker of disease severity. Plasma levels of CXCL13 correlate with germinal centres' activity in animal models and disease severity in SS, suggesting its potential use as a surrogate serum marker to monitor local B-cell activation. The aim of this study was to evaluate the potential role of CXCL13 as a biomarker of SG pathology in two independent SS cohorts. METHODS: 109 patients with SS were recruited at Sapienza University of Rome (Italy) (n = 60), or at Queen Elizabeth Hospital in Birmingham and Barts Health NHS Trust in London (n = 49). Both sera and matched minor SG biopsy were available. Sicca (n = 57) and healthy subjects' (n = 19) sera were used as control. RESULTS: CXCL13 serum level was higher in SS patients compared with controls. Correlations between its serum levels and a series of histomorphological parameters, including size of the aggregates and the presence germinal centres', were observed. CONCLUSION: Our data foster the use of CXCL13 to monitor the extent of local pathology in SS and its validation in longitudinal clinical studies.


Subject(s)
B-Lymphocytes/immunology , Chemokine CXCL13/blood , Immunity, Cellular , Salivary Glands, Minor/pathology , Sjogren's Syndrome/blood , Adult , B-Lymphocytes/pathology , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology
6.
Brain ; 142(10): 3243-3264, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31504240

ABSTRACT

Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases.


Subject(s)
Imidazoles/pharmacology , Microglia/drug effects , Pyridines/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Alzheimer Disease/pathology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Genome-Wide Association Study , Humans , Imidazoles/metabolism , Mice , Mice, Transgenic , Microglia/physiology , Neurodegenerative Diseases/drug therapy , Neurogenesis , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Pyridines/metabolism , Receptors, GABA/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Tauopathies/drug therapy , tau Proteins/genetics
7.
Sci Rep ; 9(1): 7475, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097765

ABSTRACT

Early stages of geographic atrophy (GA) age-related macular degeneration is characterised by the demise of photoreceptors, which precedes the loss of underlying retinal pigment epithelial (RPE) cells. Sight-loss due to GA has no effective treatment; reflecting both the complexity of the disease and the lack of suitable animal models for testing potential therapies. We report the development and characterisation of a laser-induced mouse model with early GA-like pathology. Retinas were lasered at adjacent sites using a 810 nm laser (1.9 J/spot), resulting in the development of confluent, hypopigmented central lesions with well-defined borders. Optical Coherence Tomography over 2-months showed progressive obliteration of photoreceptors with hyper-reflective outer plexiform and RPE/Bruch's membrane (BrM) layers within lesions, but an unaffected inner retina. Light/electron microscopy after 3-months revealed lesions without photoreceptors, leaving the outer plexiform layer apposed to the RPE. We observed outer segment debris, hypo/hyperpigmented RPE, abnormal apical-basal RPE surfaces and BrM thickening. Lesions had wedge-shaped margins, extended zones of damage, activated Müller cells, microglial recruitment and functional retinal deficits. mRNA studies showed complement and inflammasome activation, microglial/macrophage phagocytosis and oxidative stress providing mechanistic insights into GA. We propose this mouse model as an attractive tool for early GA studies and drug-discovery.


Subject(s)
Disease Models, Animal , Geographic Atrophy/pathology , Infrared Rays/adverse effects , Retina/pathology , Animals , Female , Geographic Atrophy/etiology , Lasers , Mice , Mice, Inbred C57BL , Retina/diagnostic imaging , Retina/radiation effects , Tomography, Optical Coherence
8.
Ann Rheum Dis ; 78(2): 249-260, 2019 02.
Article in English | MEDLINE | ID: mdl-30472652

ABSTRACT

BACKGROUND: The phosphatidylinositol 3-kinase delta isoform (PI3Kδ) belongs to an intracellular lipid kinase family that regulate lymphocyte metabolism, survival, proliferation, apoptosis and migration and has been successfully targeted in B-cell malignancies. Primary Sjögren's syndrome (pSS) is a chronic immune-mediated inflammatory disease characterised by exocrine gland lymphocytic infiltration and B-cell hyperactivation which results in systemic manifestations, autoantibody production and loss of glandular function. Given the central role of B cells in pSS pathogenesis, we investigated PI3Kδ pathway activation in pSS and the functional consequences of blocking PI3Kδ in a murine model of focal sialoadenitis that mimics some features of pSS. METHODS AND RESULTS: Target validation assays showed significant expression of phosphorylated ribosomal protein S6 (pS6), a downstream mediator of the phosphatidylinositol 3-kinase delta (PI3Kδ) pathway, within pSS salivary glands. pS6 distribution was found to co-localise with T/B cell markers within pSS aggregates and the CD138+ plasma cells infiltrating the glands. In vivo blockade of PI3Kδ activity with seletalisib, a PI3Kδ-selective inhibitor, in a murine model of focal sialoadenitis decreased accumulation of lymphocytes and plasma cells within the glands of treated mice in the prophylactic and therapeutic regimes. Additionally, production of lymphoid chemokines and cytokines associated with ectopic lymphoneogenesis and, remarkably, saliva flow and autoantibody production, were significantly affected by treatment with seletalisib. CONCLUSION: These data demonstrate activation of PI3Kδ pathway within the glands of patients with pSS and its contribution to disease pathogenesis in a model of disease, supporting the exploration of the therapeutic potential of PI3Kδ pathway inhibition in this condition.


Subject(s)
Phosphatidylinositol 3-Kinase/metabolism , Pyridines/pharmacology , Quinolines/pharmacology , Sialadenitis/enzymology , Signal Transduction/drug effects , Sjogren's Syndrome/enzymology , Animals , Autoantibodies/biosynthesis , B-Lymphocytes/metabolism , Cytokines/metabolism , Disease Models, Animal , Mice , Phosphatidylinositol 3-Kinase/drug effects , Plasma Cells/metabolism , Ribosomal Protein S6/metabolism , Salivary Glands/metabolism , Sialadenitis/drug therapy , Sjogren's Syndrome/drug therapy
9.
Front Immunol ; 9: 1952, 2018.
Article in English | MEDLINE | ID: mdl-30258435

ABSTRACT

Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Dendritic Cells, Follicular/immunology , Immunity, Humoral , Neoplasms/immunology , Tertiary Lymphoid Structures/immunology , Animals , Autoimmunity , B-Lymphocytes/pathology , Dendritic Cells, Follicular/pathology , Humans , Neoplasms/pathology , Tertiary Lymphoid Structures/pathology
10.
Front Immunol ; 8: 1628, 2017.
Article in English | MEDLINE | ID: mdl-29225603

ABSTRACT

Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated ß2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.

11.
J Immunol ; 194(8): 3656-63, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25795756

ABSTRACT

Although reports documented aberrant cytokine expression in autoimmune bullous dermatoses (AIBDs), cytokine-targeting therapies have not been established in these disorders. We showed previously that IL-6 treatment protected against tissue destruction in experimental epidermolysis bullosa acquisita (EBA), an AIBD caused by autoantibodies to type VII collagen (COL7). The anti-inflammatory effects of IL-6 were mediated by induction of IL-1ra, and prophylactic IL-1ra administration prevented blistering. In this article, we demonstrate elevated serum concentrations of IL-1ß in both mice with experimental EBA induced by injection of anti-COL7 IgG and in EBA patients. Increased IL-1α and IL-1ß expression also was observed in the skin of anti-COL7 IgG-injected wild-type mice compared with the significantly less diseased IL-1R-deficient or wild-type mice treated with the IL-1R antagonist anakinra or anti-IL-1ß. These findings suggested that IL-1 contributed to recruitment of inflammatory cells into the skin. Accordingly, the expression of ICAM-1 was decreased in IL-1R-deficient and anakinra-treated mice injected with anti-COL7. This effect appeared to be specifically attributable to IL-1 because anakinra blocked the upregulation of different endothelial adhesion molecules on IL-1-stimulated, but not on TNF-α-stimulated, cultured endothelial cells. Interestingly, injection of caspase-1/11-deficient mice with anti-COL7 IgG led to the same extent of skin lesions as in wild-type mice. Collectively, our data suggest that IL-1, independently of caspase-1, contributes to the pathogenesis of EBA. Because anti-IL-1ß in a prophylactic setting and anakinra in a quasi-therapeutic setting (i.e., when skin lesions had already developed) improved experimental EBA, IL-1 appears to be a potential therapeutic target for EBA and related AIBDs.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Blister/immunology , Caspase 1/immunology , Epidermolysis Bullosa Acquisita/immunology , Immunoglobulin G/immunology , Intercellular Adhesion Molecule-1/immunology , Interleukin-1beta/immunology , Animals , Autoantibodies/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Blister/genetics , Caspase 1/genetics , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Collagen Type VII/genetics , Collagen Type VII/immunology , Epidermolysis Bullosa Acquisita/genetics , Immunoglobulin G/genetics , Intercellular Adhesion Molecule-1/genetics , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/genetics , Mice , Mice, Knockout , Skin/immunology , Skin/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Up-Regulation/drug effects , Up-Regulation/genetics , Up-Regulation/immunology
13.
J Invest Dermatol ; 135(3): 768-775, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25330299

ABSTRACT

Although well-designed prospective trials are generally lacking, intravenous immunoglobulins (IVIG) seem an effective adjuvant treatment for autoimmune bullous skin diseases. Here, efficacy of IVIG monotherapy was compared with corticosteroid treatment in mice with immunization-induced experimental epidermolysis bullosa acquisita (EBA), an autoimmune bullous skin disease characterized by autoantibodies against type VII collagen. We found that IVIG significantly ameliorated clinical disease severity and skin neutrophil infiltration compared with vehicle-treated mice, whereas methylprednisolone showed comparatively less pronounced effects. Efficacy of IVIG was accompanied by reduced levels of autoantibodies, a shift toward noncomplement-fixing autoantibodies, and lower complement deposition at the dermal-epidermal junction. In addition, peripheral Gr-1-positive cells of IVIG-treated animals showed reduced expression of the activating Fcγ receptor IV, which we recently described as a major mediator of tissue injury in experimental EBA. These data show that treatment with IVIG is superior to systemic corticosteroids in experimental EBA and that the effects of IVIG are pleiotropic involving modulation of both the adaptive and innate immune response, although the detailed mode of action of IVIG in this model remains in need of further elucidation.


Subject(s)
Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/metabolism , Immunoglobulins, Intravenous/therapeutic use , Severity of Illness Index , Adrenal Cortex Hormones/therapeutic use , Animals , Autoantibodies/metabolism , Collagen Type VII/immunology , Disease Models, Animal , Mice , Mice, Mutant Strains , Receptors, Cell Surface/metabolism , Receptors, IgG/metabolism , Treatment Outcome
14.
World J Diabetes ; 5(4): 505-10, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25126396

ABSTRACT

Ever since its first appearance among the multiple forms of diabetes, latent autoimmune diabetes in adults (LADA), has been the focus of endless discussions concerning mainly its existence as a special type of diabetes. In this mini-review, through browsing important peer-reviewed publications, (original articles and reviews), we will attempt to refresh our knowledge regarding LADA hoping to enhance our understanding of this controversial diabetes entity. A unique combination of immunological, clinical and metabolic characteristics has been identified in this group of patients, namely persistent islet cell antibodies, high frequency of thyroid and gastric autoimmunity, DR3 and DR4 human leukocyte antigen haplotypes, progressive loss of beta cells, adult disease onset, normal weight, defective glycaemic control, and without tendency to ketoacidosis. Although anthropomorphic measurements are useful as a first line screening, the detection of C-peptide levels and the presence of glutamic acid decarboxylase (GAD) autoantibodies is undoubtedly the sine qua non condition for a confirmatory LADA diagnosis. In point of fact, GAD autoantibodies are far from being solely a biomarker and the specific role of these autoantibodies in disease pathogenesis is still to be thoroughly studied. Nevertheless, the lack of diagnostic criteria and guidelines still puzzle the physicians, who struggle between early diagnosis and correct timing for insulin treatment.

15.
Autoimmune Dis ; 2014: 623514, 2014.
Article in English | MEDLINE | ID: mdl-24804083

ABSTRACT

The increasing prevalence of celiac disease (CD), especially in adults, its atypical clinical presentation, and the strict, lifelong adherence to gluten-free diet (GFD) as the only option for healthy state create an imperative need for noninvasive methods that can effectively diagnose CD and monitor GFD. Aim. Evaluation of anti-endomysium (EmA) and anti-tissue transglutaminase IgA (tTG-A) antibodies in CD diagnosis, GFD monitoring, and first degree relatives screening in CD adult patients. Methods. 70 newly diagnosed Greek adult patients, 70 controls, and 47 first degree relatives were tested for the presence of EmA and tTG-A. The CD patients were monitored during a 3-year period. Results. EmA predictive ability for CD diagnosis was slightly better compared to tTG-A (P = 0.043). EmA could assess compliance with GFD already from the beginning of the diet, while both EmA and tTG-A had an equal ability to discriminate between strictly and partially compliant patients after the first semester and so on. Screening of first degree relatives resulted in the identification of 2 undiagnosed CD cases. Conclusions. Both EmA and tTG-A are suitable markers in the CD diagnosis, in the screening of CD among first degree relatives, having also an equal performance in the long term monitoring.

16.
Autoimmune Dis ; 2011: 626495, 2011.
Article in English | MEDLINE | ID: mdl-21687647

ABSTRACT

Objective. To retrospectively evaluate ANCA testing in a cohort of unselected Greek in- and outpatients. Methods. In 10803 consecutive serum samples, ANCA were tested by indirect immunofluorescence (IIF) and ELISA. ELISA in inpatients was performed only on IIF positive sera. Results. Low prevalence (6.0%) of IIF positive samples was observed. Among these samples, 63.5% presented perinuclear (p-ANCA), 9.3% cytoplasmic (c-ANCA) and 27.2% atypical (x-ANCA) pattern. 16.1% of p-ANCA were antimyeloperoxidase (anti-MPO) positive, whereas 68.3% of c-ANCA were antiproteinase-3 (anti-PR3) positive. Only 17 IIF negative outpatients' samples were ELISA positive. ANCA-associated vasculitides (AAV), connective tissue disorders and gastrointestinal disorders represented 20.5%, 23.9%, and 21.2% of positive results, respectively. AAV patients exhibited higher rates of MPO/PR3 specificity compared to non-AAV (93.8% versus 8%). Conclusions. This first paper on Greek patients supports that screening for ANCA by IIF and confirming positive results by ELISA minimize laboratory charges without sacrificing diagnostic accuracy.

17.
Ann N Y Acad Sci ; 1173: 243-51, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19758158

ABSTRACT

The first component of the classical pathway of the complement system (C1q) is considered to have a crucial role in the clearance of immune complexes (ICs) as well as in the removal of waste material originating from apoptotic cells. A prolonged exposure of C1q epitopes to the immune system could eventually lead to an autoimmune response against itself. Although autoantibodies against C1q are found in several diseases, their clinical interest originates from their strong association to active lupus nephritis (LN). Several studies indicate that anti-C1q autoantibodies could serve as a reliable serologic marker in the assessment of LN activity compared to other immunological tests. Additionally, it was suggested that anti-C1q autoantibodies could play a role in LN pathogenesis. Their potential pathogenic actions likely depend on genetic background, titers, Ig classes and subclasses, and specific epitopes of anti-C1q autoantibodies as well as C1q availability and allocation. It is still unclear which different types of anti-C1q autoantibodies dominate in each case and if their upregulation is pathogenic, an epiphenomenon of aberrant tissue damage, or compensatory to an uncontrolled immune response.


Subject(s)
Autoantibodies/blood , Complement C1q/immunology , Lupus Nephritis/diagnosis , Animals , Biomarkers/blood , Complement Pathway, Classical/immunology , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Prognosis
18.
Autoimmun Rev ; 8(8): 687-91, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19217947

ABSTRACT

Type 1 diabetes mellitus (T1DM) has been shown to be a disease characterized by immune-mediated destruction of the insulin-producing islet beta-cells (beta-cells) in the pancreas. Intensive studies, in both patients and animal models are trying to elucidate the specific antigenic targets that are responsible for islet cell autoimmunity. So far, the most important molecules that have been recognized are the native insulin, the 65-kDa form of glutamic acid decarboxylase (GAD(65)) and the insulinoma-antigen 2 (IA-2). Identification of those specific autoantibodies that are involved in the primary immunological events of the autoimmune disease process will allow the development of novel diagnostic procedures for early detection and initiation of potential therapy prior to irreversible loss of beta-cells. Within the framework of polyglandular disorders, T1DM may coexist with other organ specific autoimmune diseases such as autoimmune thyroid disease (ATD), autoimmune gastritis (AG), celiac disease (CD) and Addison's disease (AD), which are associated with the production of organ-specific autoantibodies. So, as a subset of patients with those autoantibodies will develop clinical disease, screening T1DM patients could prognosticate morbidity relative to unrecognised clinical entities. The close follow-up of patients with organ-specific autoantibodies could lead to seasonable identification of those requiring therapy.


Subject(s)
Autoantibodies/immunology , Diabetes Mellitus, Type 1/immunology , Glutamate Decarboxylase/immunology , Insulin/immunology , Islets of Langerhans/immunology , Autoantibodies/metabolism , Diabetes Mellitus, Type 1/metabolism , Glutamate Decarboxylase/metabolism , Humans , Insulin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/immunology , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...