Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cytometry ; 45(2): 102-14, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11590622

ABSTRACT

BACKGROUND: Fluorescently labeled ligands and flow cytometric methods allow quantification of receptor-ligand binding. Such methods require calibration of the fluorescence of bound ligands. Moreover, binding of unlabeled ligands can be calculated based on their abilities to compete with a labeled ligand. In this study, calibration parameters were determined for six fluorescently labeled N-formyl peptides that bind to receptors on neutrophils. Two of these ligands were then used to develop and validate competitive binding protocols for determining binding constants of unlabeled ligands. METHODS: Spectrofluorometric and flow cytometric methods for converting relative flow cytometric intensities to number of bound ligand/cell were extended to include peptides labeled with fluorescein, Bodipy, and tetramethylrhodamine. The validity of flow cytometric competitive binding protocols was tested using two ligands with different fluorescent properties that allowed determination of rate constants both directly and competitively for one ligand, CHO-NLFNYK-tetramethylrhodamine. RESULTS: Calibration parameters were determined for six fluorescently-labeled N-formyl peptides. Equilibrium dissociation constants for these ligands varied over two orders of magnitude and depended upon the peptide sequence and the molecular structure of the fluorescent tag. Kinetic rate constants for CHO-NLFNYK-tetramethylrhodamine determined directly or in competition with CHO-NLFNYK-fluorescein were statistically identical. CONCLUSIONS: Combination of spectrofluorometric and flow cytometric methods allows convenient calculation of calibration parameters for a series of fluorescent ligands that bind to the same receptor site. Competitive binding protocols have been independently validated.


Subject(s)
Flow Cytometry/methods , Fluorescent Dyes/metabolism , Oligopeptides/metabolism , Binding, Competitive , Calibration , Fluorescent Dyes/chemistry , Humans , Ligands , Neutrophils/metabolism , Oligopeptides/chemistry , Protein Binding , Reproducibility of Results , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...