Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Oncol ; 12(2): 337-43, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9458359

ABSTRACT

DNA-binding molecules have been recently proposed as potential inhibitors of molecular interactions between transcription factors and target DNA sequences. Among DNA-binding drugs, chromomycin binds to GC-rich sequences of the Sp1 binding sites of the Ha-ras oncogene. These sites are also molecular targets of a triple-helix forming oligonucleotide [Sp1(Ha-ras)TFO] which is able to inhibit Ha-ras oncogene transcription. We studied molecular interactions between triple-helix forming oligonucleotides and target Sp1 binding sites of the human Ha-ras promoter in the presence of the DNA-binding drug chromomycin. This study was performed by (a) surface plasmon resonance and biosensor technology, (b) gel retardation assay and (c) magnetic capturing of molecular complexes between TFO, chromomycin and target DNA. The main conclusion of our study is that low concentrations of chromomycin allow binding of the triplex-forming oligonucleotide to Sp1 target DNA sequences of the Ha-ras oncogene promoter. Higher concentrations of this DNA-binding drug fully suppress molecular interactions between the Sp1(Ha-ras)TFO and target DNA. Additionally, low concentrations of chromomycin potentiate the effects of the Sp1(Ha-ras)TFO in inhibiting the molecular interactions between purified Sp1 transcription factor and target DNA sequences.


Subject(s)
Chromomycins/pharmacology , DNA-Binding Proteins/pharmacology , Genes, ras/drug effects , Oligonucleotides/metabolism , Sp1 Transcription Factor/drug effects , Surface Plasmon Resonance/methods , Binding Sites , Carcinogens , Humans , In Vitro Techniques , Molecular Sequence Data , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Time Factors
2.
Biochem J ; 326 ( Pt 3): 919-27, 1997 Sep 15.
Article in English | MEDLINE | ID: mdl-9307046

ABSTRACT

We have studied the effects of chromomycin and of a triple-helix-forming oligonucleotide (TFO) that recognizes Sp1 binding sites on protein-DNA interactions and HIV-1 transcription. Molecular interactions between chromomycin, the Sp1 TFO and target DNA sequences were studied by gel retardation, triplex affinity capture using streptavidin-coated magnetic beads and biosensor technology. We also determined whether chromomycin and a TFO recognizing the Sp1 binding sites of the HIV-1 long terminal repeat (LTR) inhibit the activity of restriction enzyme HaeIII, which recognizes a sequence (5'-GGCC-3') located within these Sp1 binding sites. The effects of chromomycin and the TFO on the interaction between nuclear proteins or purified Sp1 and a double-stranded oligonucleotide containing the Sp1 binding sites of the HIV-1 LTR were studied by gel retardation. The effects of both chromomycin and TFO on transcription were studied by using an HIV-1 LTR-directed in vitro transcription system. Our results indicate that low concentrations of chromomycin potentiate the effects of the Sp1 TFO in inhibiting protein-DNA interactions and HIV-1-LTR-directed transcription. In addition, low concentrations of chromomycin do not affect binding of the TFO to target DNA molecules. The results presented here support the hypothesis that both DNA binding drugs and TFOs can be considered as sequence-selective modifiers of DNA-protein interactions, possibly leading to specific alterations of biological functions. In particular, the combined use of chromomycin and TFOs recognizing Sp1 binding sites could be employed in order to abolish the biological functions of promoters (such as the HIV-1 LTR) whose activity is potentiated by interactions with the promoter-specific transcription factor Sp1.


Subject(s)
Chromomycins/metabolism , DNA/genetics , HIV Long Terminal Repeat/genetics , Oligonucleotides/genetics , Transcription, Genetic , Binding Sites , DNA/metabolism , Gene Targeting , Genome, Viral , Oligonucleotides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...