Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 7: 1294-8, 2011.
Article in English | MEDLINE | ID: mdl-21977214

ABSTRACT

Dihydropyrimidinones and dihydropyrimidinethiones generated from the Biginelli reactions of perfluorooctanesulfonyl-attached benzaldehydes are used as common intermediates for post-condensation modifications such as cycloaddition, Liebeskind-Srogl reaction and Suzuki coupling to form biaryl-substituted dihydropyrimidinone, dihydropyrimidine, and thiazolopyrimidine compounds. The high efficiency of the diversity-oriented synthesis is achieved by conducting a multicomponent reaction for improved atom economy, under microwave heating for fast reaction, and with fluorous solid-phase extractions (F-SPE) for ease of purification.

2.
Proc Natl Acad Sci U S A ; 105(51): 20380-5, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19091943

ABSTRACT

More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.


Subject(s)
Genomics/methods , Neoplasms/pathology , Oncogenes/physiology , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation , Chromobox Protein Homolog 5 , Genome, Human , Humans , Intracellular Signaling Peptides and Proteins/genetics , Oncogenes/genetics , Pharmacogenetics , RNA, Small Interfering , Tumor Cells, Cultured , fas Receptor/metabolism
3.
Cell ; 124(6): 1283-98, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16564017

ABSTRACT

To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.


Subject(s)
Gene Library , Genetic Engineering/methods , Genetic Vectors , Lentivirus/genetics , RNA, Small Interfering/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/physiology , Cells, Cultured , Humans , Libraries , Mice , Microarray Analysis
4.
Nature ; 437(7058): 551-5, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16177791

ABSTRACT

Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.


Subject(s)
Chromosomes, Human, Pair 18/genetics , DNA/genetics , Aneuploidy , Animals , Conserved Sequence/genetics , CpG Islands/genetics , Exons/genetics , Expressed Sequence Tags , Genes/genetics , Genome, Human , Humans , Introns/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...