Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2405178, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762788

ABSTRACT

Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity. Employing scanning tunneling and angle-resolved photoemission spectroscopies, energy-dependent transitions of real-space electronic states above the Fermi level and formation of the valence band are respectively observed. Furthermore, density functional theory (DFT) calculations corroborate the observations and reveal that doubly degenerate frontier molecular orbitals on a honeycomb lattice give rise to flat, Dirac and Kagome bands close to the Fermi level. DFT modeling also indicates an intrinsic band gap for the pristine sheet material, which is retained for a bilayer with h-BN, whereas adsorption-induced in-gap electronic states evolve at the synthesis platform with Ag-GDY decorating the (111) facet of silver. These results illustrate the tremendous potential for engineering novel band structures via molecular orbital and lattice symmetries in atomically precise 2D carbon materials.

2.
Nat Commun ; 15(1): 1062, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316774

ABSTRACT

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.

3.
Nano Lett ; 24(6): 1923-1930, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315034

ABSTRACT

The bottom-up synthesis of carbon-based nanomaterials directly on semiconductor surfaces allows for the decoupling of their electronic and magnetic properties from the substrates. However, the typically reduced reactivity of such nonmetallic surfaces adversely affects the course of these reactions. Here, we achieve a high polymerization yield of halogenated polyphenyl molecular building blocks on the semiconducting TiO2(110) surface via concomitant surface decoration with cobalt atoms, which catalyze the Ullmann coupling reaction. Specifically, cobalt atoms trigger the debromination of 4,4″-dibromo-p-terphenyl molecules on TiO2(110) and mediate the formation of an intermediate organometallic phase already at room temperature (RT). As the debromination temperature is drastically reduced, homocoupling and polymerization readily proceed, preventing presursor desorption from the substrate and entailing a drastic increase of the poly-para-phenylene polymerization yield. The general efficacy of this mechanism is shown with an iodinated terphenyl derivative, which exhibits similar dehalogenation and reaction yield.

4.
Nat Commun ; 15(1): 1858, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424075

ABSTRACT

Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to TC ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks.

5.
Adv Mater ; 36(9): e2302520, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37924223

ABSTRACT

The ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness. Specifically, a silicon wafer is lithographically patterned to introduce on-demand lateral shapes, chemically process the sample to obtain an atomically flat silicon surface, and epitaxially deposit silver to obtain ultrathin crystalline metal films with the designated morphologies. Structures fabricated by following this procedure allow for an unprecedented control over optical field confinement in the near-infrared spectral region, which is here illustrated by the observation of fundamental and higher-order plasmons featuring extreme spatial confinement and high-quality factors that reflect the crystallinity of the metal. The present study constitutes a substantial improvement in the degree of spatial confinement and quality factor that should facilitate the design and exploitation of atomic-scale nanoplasmonic devices for optoelectronics, sensing, and quantum-physics applications.

6.
ACS Nano ; 17(6): 5448-5458, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36884023

ABSTRACT

Engineering quantum phenomena of two-dimensional nearly free electron states has been at the forefront of nanoscience studies ever since the first creation of a quantum corral. Common strategies to fabricate confining nanoarchitectures rely on manipulation or on applying supramolecular chemistry principles. The resulting nanostructures do not protect the engineered electronic states against external influences, hampering the potential for future applications. These restrictions could be overcome by passivating the nanostructures with a chemically inert layer. To this end we report a scalable segregation-based growth approach forming extended quasi-hexagonal nanoporous CuS networks on Cu(111) whose assembly is driven by an autoprotecting h-BN overlayer. We further demonstrate that by this architecture both the Cu(111) surface state and image potential states of the h-BN/CuS heterostructure are confined within the nanopores, effectively forming an extended array of quantum dots. Semiempirical electron-plane-wave-expansion simulations shed light on the scattering potential landscape responsible for the modulation of the electronic properties. The protective properties of the h-BN capping are tested under various conditions, representing an important step toward the realization of robust surface state based electronic devices.

7.
Nanoscale ; 15(5): 2285-2291, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36633266

ABSTRACT

One-dimensional (1D) metal-organic (MO) nanowires are captivating from fundamental and technological perspectives due to their distinctive magnetic and electronic properties. The solvent-free synthesis of such nanomaterials on catalytic surfaces provides a unique approach for fabricating low-dimensional single-layer materials with atomic precision and low amount of defects. A detailed understanding of the electronic structure of MO polymers such as band gap and dispersive bands is critical for their prospective implementation into nanodevices such as spin sensors or field-effect transistors. Here, we have performed the on-surface reaction of quinoidal ligands with single cobalt atoms (Co-QDI) on a vicinal Au(788) surface in ultra-high vacuum. This procedure promotes the growth and uniaxial alignment of Co-QDI MO chains along the surface atomic steps, while permitting the mapping of their electronic properties with space-averaging angle-resolved photoemission spectroscopy. In the direction parallel to the principal chain axis, a well-defined 1D band structure with weakly dispersive and dispersive bands is observed, confirming a pronounced electron delocalization. Low-temperature scanning tunneling microscopy/spectroscopy delves into the atomically precise structure of the nanowires and elucidates their narrow bandgap. These findings are supported with GW0 band structure calculations showing that the observed electronic bands emanate from the efficient hybridization of Co(3d) and molecular orbitals. Our work paves the way towards a systematic search of similar 1D π-d hybridized MO chains with tunable electronic and magnetic properties defined by the transition or rare earth metal atom of choice.

8.
Nanoscale ; 14(18): 7039-7048, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35471409

ABSTRACT

Tailoring Shockley surface-state (SS) electrons utilizing complex interfacial supramolecular tessellations was explored by low-temperature scanning tunnelling microscopy and spectroscopy, combined with computational modelling using electron plane wave expansion (EPWE) and empirical tight-binding (TB) methods. Employing a recently introduced gas-mediated on-surface reaction protocol, three distinct types of open porous networks comprising paired organometallic species as basic tectons were selectively synthesized. In particular, these supramolecular networks feature semiregular Archimedean tilings, providing intricate quantum dots (QDs) coupling scenarios compared to hexagonal porous superlattices. Our experimental results in conjunction with modelling calculations demonstrate the possibility of realizing novel two-dimensional electronic structures such as Kagome- and Dirac-type as well as hybrid Kagome-type bands via QD coupling. Compared to constructing SS electron pathways via molecular manipulations, our studies reveal significant potential of exploiting QD coupling as a complementary and versatile route for the control of surface electronic landscapes.

9.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34947652

ABSTRACT

Chiral graphene nanoribbons are extremely interesting structures due to their narrow band gaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces. The use of a curved Ag single crystal provides, within the same sample, regions of disparate step structure and step density. Whereas the former leads to distinct azimuthal growth orientations of the graphene nanoribbons atop, the latter modulates the substrate's work function and thereby the interface energy level alignment. In turn, we disclose the associated charge transfer from the substrate to the ribbon and assess its effect on the nanoribbon's properties and the edge state magnetization.

10.
Nanoscale ; 13(10): 5216-5223, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33661272

ABSTRACT

Recently, mixed honeycomb-kagome lattices featuring metal-organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called "organic topological insulators" are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.

11.
RSC Adv ; 10(56): 33844-33850, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-36303597

ABSTRACT

We present electronic structure calculations based on a single-parameter plane wave expansion method for basic graphene building blocks, namely n-oligophenylenes and n-oligoacenes, revealing excellent agreement with density-functional theory. When oligophenylene molecules are joined through meta (zigzag) or ortho (chevron) junctions, the resulting molecular dimers and polymers exhibit a semiconducting character. While zigzag dimers of oligoacenes also exhibit gapped electronic structures, their chevron-phase features a sharp metallic band at the Fermi energy. This zero-point-energy state, which transforms into Dirac-like band in chevron polymers, survives at the outer elbows of the dimer irrespective of the molecular length, and has the same origin as reported for the polyacetylene and topologically induced edge states at edge-decorated graphene nanoribbons. These findings assist the engineering of topological electronic states at the molecular level and complement the toolbox of quantum phases in carbon-based nanostructures.

12.
Nanoscale ; 11(48): 23132-23138, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31793595

ABSTRACT

Quantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.

13.
Phys Rev Lett ; 123(26): 266805, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951458

ABSTRACT

On-surface metal-organic nanoporous networks generally refer to adatom coordinated molecular arrays, which are characterized by the presence of well-defined and regular nanopores. These periodic structures constructed using two types of components confine the surface electrons of the substrate within their nanocavities. However, the confining (or scattering) strength that individual building units exhibit is a priori unknown. Here, we study the modification of the substrate's surface electrons by the interaction with a Cu-coordinated TPyB metal-organic network formed on Cu(111) and disentangle the scattering potentials and confinement properties. By means of STM and angle-resolved photoemission spectroscopy we find almost unperturbed free-electron-like states stemming from the rather weak electron confinement that yields significant coupling between adjacent pores. Electron plane wave expansion simulations match the superlattice induced experimental electronic structure, which features replicating bands and energy renormalization effects. Notably, the electrostatic potential landscape obtained from our ab initio calculations suggests that the molecules are the dominant scattering entities while the coordination metal atoms sandwiched between them act as leaky channels. These metal atom transmission conduits facilitate and enhance the coupling among quantum dots, which are prone to be exploited to engineer the electronic structure of surface electron gases.

14.
ACS Nano ; 12(10): 10537-10544, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30295463

ABSTRACT

Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.

15.
ACS Nano ; 11(12): 12392-12401, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29161499

ABSTRACT

The high reactivity of magnetic substrates toward molecular overlayers has so far inhibited the realization of more sophisticated on-surface reactions, thereby depriving these interfaces of a significant class of chemically tailored organics such as graphene nanoribbons, oligonuclear spin-chains, and metal-organic networks. Here, we present a multitechnique characterization of the polymerization of 4,4″-dibromo-p-terphenyl precursors into ordered poly(p-phenylene) arrays on top of the bimetallic GdAu2 surface alloy. The activation temperatures for bromine scission and subsequent homocoupling of molecular precursors were followed by temperature-dependent X-ray photoelectron spectroscopy. The structural characterizations of supramolecular and polymeric phases, performed by low-energy electron diffraction and scanning tunneling microscopy, establish an extraordinary degree of order extending into the mesoscale. Taking advantage of the high homogeneity, the electronic structure of the valence band was determined with angle-resolved photoemission spectroscopy. Importantly, the transition of localized molecular orbitals into a highly dispersive π-band, the fingerprint of successful polymerization, was observed while leaving all surface-related bands intact. Moreover, ferromagnetic ordering in the GdAu2 alloy was demonstrated for all phases by X-ray absorption spectroscopy. The transfer of well-established in situ methods for growing covalently bonded macromolecules with atomic precision onto magnetic rare-earth alloys is an important step toward toward studying and controlling intrinsic carbon- and rare-earth-based magnetism.

16.
Nat Commun ; 8(1): 787, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28983115

ABSTRACT

Quantum dots are known to confine electrons within their structure. Whenever they periodically aggregate into arrays and cooperative interactions arise, novel quantum properties suitable for technological applications show up. Control over the potential barriers existing between neighboring quantum dots is therefore essential to alter their mutual crosstalk. Here we show that precise engineering of the barrier width can be experimentally achieved on surfaces by a single atom substitution in a haloaromatic compound, which in turn tunes the confinement properties through the degree of quantum dot intercoupling. We achieved this by generating self-assembled molecular nanoporous networks that confine the two-dimensional electron gas present at the surface. Indeed, these extended arrays form up on bulk surface and thin silver films alike, maintaining their overall interdot coupling. These findings pave the way to reach full control over two-dimensional electron gases by means of self-assembled molecular networks.Arrays of quantum dots can exhibit a variety of quantum properties, being sensitive to their spacing. Here, the authors fine tune interdot coupling using hexagonal molecular networks in which the dots are separated by single or double haloaromatic compounds, structurally identical but for a single atom.

17.
Small ; 12(28): 3757-63, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27276517

ABSTRACT

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

SELECTION OF CITATIONS
SEARCH DETAIL
...